File size: 29,929 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
import os
from typing import List, Literal

ROUTER_MAX_FALLBACKS = int(os.getenv("ROUTER_MAX_FALLBACKS", 5))
DEFAULT_BATCH_SIZE = int(os.getenv("DEFAULT_BATCH_SIZE", 512))
DEFAULT_FLUSH_INTERVAL_SECONDS = int(os.getenv("DEFAULT_FLUSH_INTERVAL_SECONDS", 5))
DEFAULT_S3_FLUSH_INTERVAL_SECONDS = int(
    os.getenv("DEFAULT_S3_FLUSH_INTERVAL_SECONDS", 10)
)
DEFAULT_S3_BATCH_SIZE = int(os.getenv("DEFAULT_S3_BATCH_SIZE", 512))
DEFAULT_MAX_RETRIES = int(os.getenv("DEFAULT_MAX_RETRIES", 2))
DEFAULT_MAX_RECURSE_DEPTH = int(os.getenv("DEFAULT_MAX_RECURSE_DEPTH", 100))
DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER = int(
    os.getenv("DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER", 10)
)
DEFAULT_FAILURE_THRESHOLD_PERCENT = float(
    os.getenv("DEFAULT_FAILURE_THRESHOLD_PERCENT", 0.5)
)  # default cooldown a deployment if 50% of requests fail in a given minute
DEFAULT_MAX_TOKENS = int(os.getenv("DEFAULT_MAX_TOKENS", 4096))
DEFAULT_ALLOWED_FAILS = int(os.getenv("DEFAULT_ALLOWED_FAILS", 3))
DEFAULT_REDIS_SYNC_INTERVAL = int(os.getenv("DEFAULT_REDIS_SYNC_INTERVAL", 1))
DEFAULT_COOLDOWN_TIME_SECONDS = int(os.getenv("DEFAULT_COOLDOWN_TIME_SECONDS", 5))
DEFAULT_REPLICATE_POLLING_RETRIES = int(
    os.getenv("DEFAULT_REPLICATE_POLLING_RETRIES", 5)
)
DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = int(
    os.getenv("DEFAULT_REPLICATE_POLLING_DELAY_SECONDS", 1)
)
DEFAULT_IMAGE_TOKEN_COUNT = int(os.getenv("DEFAULT_IMAGE_TOKEN_COUNT", 250))
DEFAULT_IMAGE_WIDTH = int(os.getenv("DEFAULT_IMAGE_WIDTH", 300))
DEFAULT_IMAGE_HEIGHT = int(os.getenv("DEFAULT_IMAGE_HEIGHT", 300))
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int(
    os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 1024)
)  # 1MB = 1024KB
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = int(
    os.getenv("SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD", 1000)
)  # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.

DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET = int(
    os.getenv("DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET", 0)
)
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = int(
    os.getenv("DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET", 1024)
)
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = int(
    os.getenv("DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET", 2048)
)
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = int(
    os.getenv("DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET", 4096)
)
MAX_TOKEN_TRIMMING_ATTEMPTS = int(
    os.getenv("MAX_TOKEN_TRIMMING_ATTEMPTS", 10)
)  # Maximum number of attempts to trim the message


########## Networking constants ##############################################################
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600  # 1 hour, re-use the same httpx client for 1 hour

########### v2 Architecture constants for managing writing updates to the database ###########
REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer"
REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer"
REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer"
REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer"
MAX_REDIS_BUFFER_DEQUEUE_COUNT = int(os.getenv("MAX_REDIS_BUFFER_DEQUEUE_COUNT", 100))
MAX_SIZE_IN_MEMORY_QUEUE = int(os.getenv("MAX_SIZE_IN_MEMORY_QUEUE", 10000))
MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = int(
    os.getenv("MAX_IN_MEMORY_QUEUE_FLUSH_COUNT", 1000)
)
###############################################################################################
MINIMUM_PROMPT_CACHE_TOKEN_COUNT = int(
    os.getenv("MINIMUM_PROMPT_CACHE_TOKEN_COUNT", 1024)
)  # minimum number of tokens to cache a prompt by Anthropic
DEFAULT_TRIM_RATIO = float(
    os.getenv("DEFAULT_TRIM_RATIO", 0.75)
)  # default ratio of tokens to trim from the end of a prompt
HOURS_IN_A_DAY = int(os.getenv("HOURS_IN_A_DAY", 24))
DAYS_IN_A_WEEK = int(os.getenv("DAYS_IN_A_WEEK", 7))
DAYS_IN_A_MONTH = int(os.getenv("DAYS_IN_A_MONTH", 28))
DAYS_IN_A_YEAR = int(os.getenv("DAYS_IN_A_YEAR", 365))
REPLICATE_MODEL_NAME_WITH_ID_LENGTH = int(
    os.getenv("REPLICATE_MODEL_NAME_WITH_ID_LENGTH", 64)
)
#### TOKEN COUNTING ####
FUNCTION_DEFINITION_TOKEN_COUNT = int(os.getenv("FUNCTION_DEFINITION_TOKEN_COUNT", 9))
SYSTEM_MESSAGE_TOKEN_COUNT = int(os.getenv("SYSTEM_MESSAGE_TOKEN_COUNT", 4))
TOOL_CHOICE_OBJECT_TOKEN_COUNT = int(os.getenv("TOOL_CHOICE_OBJECT_TOKEN_COUNT", 4))
DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT = int(
    os.getenv("DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT", 10)
)
DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT = int(
    os.getenv("DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT", 20)
)
MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES = int(
    os.getenv("MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES", 768)
)
MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES = int(
    os.getenv("MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES", 2000)
)
MAX_TILE_WIDTH = int(os.getenv("MAX_TILE_WIDTH", 512))
MAX_TILE_HEIGHT = int(os.getenv("MAX_TILE_HEIGHT", 512))
OPENAI_FILE_SEARCH_COST_PER_1K_CALLS = float(
    os.getenv("OPENAI_FILE_SEARCH_COST_PER_1K_CALLS", 2.5 / 1000)
)
MIN_NON_ZERO_TEMPERATURE = float(os.getenv("MIN_NON_ZERO_TEMPERATURE", 0.0001))
#### RELIABILITY ####
REPEATED_STREAMING_CHUNK_LIMIT = int(
    os.getenv("REPEATED_STREAMING_CHUNK_LIMIT", 100)
)  # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
DEFAULT_MAX_LRU_CACHE_SIZE = int(os.getenv("DEFAULT_MAX_LRU_CACHE_SIZE", 16))
INITIAL_RETRY_DELAY = float(os.getenv("INITIAL_RETRY_DELAY", 0.5))
MAX_RETRY_DELAY = float(os.getenv("MAX_RETRY_DELAY", 8.0))
JITTER = float(os.getenv("JITTER", 0.75))
DEFAULT_IN_MEMORY_TTL = int(
    os.getenv("DEFAULT_IN_MEMORY_TTL", 5)
)  # default time to live for the in-memory cache
DEFAULT_POLLING_INTERVAL = float(
    os.getenv("DEFAULT_POLLING_INTERVAL", 0.03)
)  # default polling interval for the scheduler
AZURE_OPERATION_POLLING_TIMEOUT = int(os.getenv("AZURE_OPERATION_POLLING_TIMEOUT", 120))
REDIS_SOCKET_TIMEOUT = float(os.getenv("REDIS_SOCKET_TIMEOUT", 0.1))
REDIS_CONNECTION_POOL_TIMEOUT = int(os.getenv("REDIS_CONNECTION_POOL_TIMEOUT", 5))
NON_LLM_CONNECTION_TIMEOUT = int(
    os.getenv("NON_LLM_CONNECTION_TIMEOUT", 15)
)  # timeout for adjacent services (e.g. jwt auth)
MAX_EXCEPTION_MESSAGE_LENGTH = int(os.getenv("MAX_EXCEPTION_MESSAGE_LENGTH", 2000))
BEDROCK_MAX_POLICY_SIZE = int(os.getenv("BEDROCK_MAX_POLICY_SIZE", 75))
REPLICATE_POLLING_DELAY_SECONDS = float(
    os.getenv("REPLICATE_POLLING_DELAY_SECONDS", 0.5)
)
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS = int(
    os.getenv("DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS", 4096)
)
TOGETHER_AI_4_B = int(os.getenv("TOGETHER_AI_4_B", 4))
TOGETHER_AI_8_B = int(os.getenv("TOGETHER_AI_8_B", 8))
TOGETHER_AI_21_B = int(os.getenv("TOGETHER_AI_21_B", 21))
TOGETHER_AI_41_B = int(os.getenv("TOGETHER_AI_41_B", 41))
TOGETHER_AI_80_B = int(os.getenv("TOGETHER_AI_80_B", 80))
TOGETHER_AI_110_B = int(os.getenv("TOGETHER_AI_110_B", 110))
TOGETHER_AI_EMBEDDING_150_M = int(os.getenv("TOGETHER_AI_EMBEDDING_150_M", 150))
TOGETHER_AI_EMBEDDING_350_M = int(os.getenv("TOGETHER_AI_EMBEDDING_350_M", 350))
QDRANT_SCALAR_QUANTILE = float(os.getenv("QDRANT_SCALAR_QUANTILE", 0.99))
QDRANT_VECTOR_SIZE = int(os.getenv("QDRANT_VECTOR_SIZE", 1536))
CACHED_STREAMING_CHUNK_DELAY = float(os.getenv("CACHED_STREAMING_CHUNK_DELAY", 0.02))
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int(
    os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 512)
)
DEFAULT_MAX_TOKENS_FOR_TRITON = int(os.getenv("DEFAULT_MAX_TOKENS_FOR_TRITON", 2000))
#### Networking settings ####
request_timeout: float = float(os.getenv("REQUEST_TIMEOUT", 6000))  # time in seconds
STREAM_SSE_DONE_STRING: str = "[DONE]"
STREAM_SSE_DATA_PREFIX: str = "data: "
### SPEND TRACKING ###
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND = float(
    os.getenv("DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND", 0.001400)
)  # price per second for a100 80GB
FIREWORKS_AI_56_B_MOE = int(os.getenv("FIREWORKS_AI_56_B_MOE", 56))
FIREWORKS_AI_176_B_MOE = int(os.getenv("FIREWORKS_AI_176_B_MOE", 176))
FIREWORKS_AI_4_B = int(os.getenv("FIREWORKS_AI_4_B", 4))
FIREWORKS_AI_16_B = int(os.getenv("FIREWORKS_AI_16_B", 16))
FIREWORKS_AI_80_B = int(os.getenv("FIREWORKS_AI_80_B", 80))
#### Logging callback constants ####
REDACTED_BY_LITELM_STRING = "REDACTED_BY_LITELM"
MAX_LANGFUSE_INITIALIZED_CLIENTS = int(
    os.getenv("MAX_LANGFUSE_INITIALIZED_CLIENTS", 50)
)
DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE = os.getenv(
    "DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE", "streaming.chunk.yield"
)

############### LLM Provider Constants ###############
### ANTHROPIC CONSTANTS ###
ANTHROPIC_WEB_SEARCH_TOOL_MAX_USES = {
    "low": 1,
    "medium": 5,
    "high": 10,
}
DEFAULT_IMAGE_ENDPOINT_MODEL = "dall-e-2"

LITELLM_CHAT_PROVIDERS = [
    "openai",
    "openai_like",
    "xai",
    "custom_openai",
    "text-completion-openai",
    "cohere",
    "cohere_chat",
    "clarifai",
    "anthropic",
    "anthropic_text",
    "replicate",
    "huggingface",
    "together_ai",
    "datarobot",
    "openrouter",
    "vertex_ai",
    "vertex_ai_beta",
    "gemini",
    "ai21",
    "baseten",
    "azure",
    "azure_text",
    "azure_ai",
    "sagemaker",
    "sagemaker_chat",
    "bedrock",
    "vllm",
    "nlp_cloud",
    "petals",
    "oobabooga",
    "ollama",
    "ollama_chat",
    "deepinfra",
    "perplexity",
    "mistral",
    "groq",
    "nvidia_nim",
    "cerebras",
    "ai21_chat",
    "volcengine",
    "codestral",
    "text-completion-codestral",
    "deepseek",
    "sambanova",
    "maritalk",
    "cloudflare",
    "fireworks_ai",
    "friendliai",
    "watsonx",
    "watsonx_text",
    "triton",
    "predibase",
    "databricks",
    "empower",
    "github",
    "custom",
    "litellm_proxy",
    "hosted_vllm",
    "llamafile",
    "lm_studio",
    "galadriel",
    "novita",
    "meta_llama",
    "featherless_ai",
    "nscale",
    "nebius",
]

LITELLM_EMBEDDING_PROVIDERS_SUPPORTING_INPUT_ARRAY_OF_TOKENS = [
    "openai",
    "azure",
    "hosted_vllm",
    "nebius",
]


OPENAI_CHAT_COMPLETION_PARAMS = [
    "functions",
    "function_call",
    "temperature",
    "temperature",
    "top_p",
    "n",
    "stream",
    "stream_options",
    "stop",
    "max_completion_tokens",
    "modalities",
    "prediction",
    "audio",
    "max_tokens",
    "presence_penalty",
    "frequency_penalty",
    "logit_bias",
    "user",
    "request_timeout",
    "api_base",
    "api_version",
    "api_key",
    "deployment_id",
    "organization",
    "base_url",
    "default_headers",
    "timeout",
    "response_format",
    "seed",
    "tools",
    "tool_choice",
    "max_retries",
    "parallel_tool_calls",
    "logprobs",
    "top_logprobs",
    "reasoning_effort",
    "extra_headers",
    "thinking",
    "web_search_options",
]

OPENAI_TRANSCRIPTION_PARAMS = [
    "language",
    "response_format",
    "timestamp_granularities",
]

OPENAI_EMBEDDING_PARAMS = ["dimensions", "encoding_format", "user"]

DEFAULT_EMBEDDING_PARAM_VALUES = {
    **{k: None for k in OPENAI_EMBEDDING_PARAMS},
    "model": None,
    "custom_llm_provider": "",
    "input": None,
}

DEFAULT_CHAT_COMPLETION_PARAM_VALUES = {
    "functions": None,
    "function_call": None,
    "temperature": None,
    "top_p": None,
    "n": None,
    "stream": None,
    "stream_options": None,
    "stop": None,
    "max_tokens": None,
    "max_completion_tokens": None,
    "modalities": None,
    "prediction": None,
    "audio": None,
    "presence_penalty": None,
    "frequency_penalty": None,
    "logit_bias": None,
    "user": None,
    "model": None,
    "custom_llm_provider": "",
    "response_format": None,
    "seed": None,
    "tools": None,
    "tool_choice": None,
    "max_retries": None,
    "logprobs": None,
    "top_logprobs": None,
    "extra_headers": None,
    "api_version": None,
    "parallel_tool_calls": None,
    "drop_params": None,
    "allowed_openai_params": None,
    "additional_drop_params": None,
    "messages": None,
    "reasoning_effort": None,
    "thinking": None,
    "web_search_options": None,
}

openai_compatible_endpoints: List = [
    "api.perplexity.ai",
    "api.endpoints.anyscale.com/v1",
    "api.deepinfra.com/v1/openai",
    "api.mistral.ai/v1",
    "codestral.mistral.ai/v1/chat/completions",
    "codestral.mistral.ai/v1/fim/completions",
    "api.groq.com/openai/v1",
    "https://integrate.api.nvidia.com/v1",
    "api.deepseek.com/v1",
    "api.together.xyz/v1",
    "app.empower.dev/api/v1",
    "https://api.friendli.ai/serverless/v1",
    "api.sambanova.ai/v1",
    "api.x.ai/v1",
    "api.galadriel.ai/v1",
    "api.llama.com/compat/v1/",
    "api.featherless.ai/v1",
    "inference.api.nscale.com/v1",
    "api.studio.nebius.ai/v1",
]


openai_compatible_providers: List = [
    "anyscale",
    "mistral",
    "groq",
    "nvidia_nim",
    "cerebras",
    "sambanova",
    "ai21_chat",
    "ai21",
    "volcengine",
    "codestral",
    "deepseek",
    "deepinfra",
    "perplexity",
    "xinference",
    "xai",
    "together_ai",
    "fireworks_ai",
    "empower",
    "friendliai",
    "azure_ai",
    "github",
    "litellm_proxy",
    "hosted_vllm",
    "llamafile",
    "lm_studio",
    "galadriel",
    "novita",
    "meta_llama",
    "featherless_ai",
    "nscale",
    "nebius",
]
openai_text_completion_compatible_providers: List = (
    [  # providers that support `/v1/completions`
        "together_ai",
        "fireworks_ai",
        "hosted_vllm",
        "meta_llama",
        "llamafile",
        "featherless_ai",
        "nebius",
    ]
)
_openai_like_providers: List = [
    "predibase",
    "databricks",
    "watsonx",
]  # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk
# well supported replicate llms
replicate_models: List = [
    # llama replicate supported LLMs
    "replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
    "a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
    "meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db",
    # Vicuna
    "replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b",
    "joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe",
    # Flan T-5
    "daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f",
    # Others
    "replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5",
    "replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad",
]

clarifai_models: List = [
    "clarifai/meta.Llama-3.Llama-3-8B-Instruct",
    "clarifai/gcp.generate.gemma-1_1-7b-it",
    "clarifai/mistralai.completion.mixtral-8x22B",
    "clarifai/cohere.generate.command-r-plus",
    "clarifai/databricks.drbx.dbrx-instruct",
    "clarifai/mistralai.completion.mistral-large",
    "clarifai/mistralai.completion.mistral-medium",
    "clarifai/mistralai.completion.mistral-small",
    "clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1",
    "clarifai/gcp.generate.gemma-2b-it",
    "clarifai/gcp.generate.gemma-7b-it",
    "clarifai/deci.decilm.deciLM-7B-instruct",
    "clarifai/mistralai.completion.mistral-7B-Instruct",
    "clarifai/gcp.generate.gemini-pro",
    "clarifai/anthropic.completion.claude-v1",
    "clarifai/anthropic.completion.claude-instant-1_2",
    "clarifai/anthropic.completion.claude-instant",
    "clarifai/anthropic.completion.claude-v2",
    "clarifai/anthropic.completion.claude-2_1",
    "clarifai/meta.Llama-2.codeLlama-70b-Python",
    "clarifai/meta.Llama-2.codeLlama-70b-Instruct",
    "clarifai/openai.completion.gpt-3_5-turbo-instruct",
    "clarifai/meta.Llama-2.llama2-7b-chat",
    "clarifai/meta.Llama-2.llama2-13b-chat",
    "clarifai/meta.Llama-2.llama2-70b-chat",
    "clarifai/openai.chat-completion.gpt-4-turbo",
    "clarifai/microsoft.text-generation.phi-2",
    "clarifai/meta.Llama-2.llama2-7b-chat-vllm",
    "clarifai/upstage.solar.solar-10_7b-instruct",
    "clarifai/openchat.openchat.openchat-3_5-1210",
    "clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B",
    "clarifai/gcp.generate.text-bison",
    "clarifai/meta.Llama-2.llamaGuard-7b",
    "clarifai/fblgit.una-cybertron.una-cybertron-7b-v2",
    "clarifai/openai.chat-completion.GPT-4",
    "clarifai/openai.chat-completion.GPT-3_5-turbo",
    "clarifai/ai21.complete.Jurassic2-Grande",
    "clarifai/ai21.complete.Jurassic2-Grande-Instruct",
    "clarifai/ai21.complete.Jurassic2-Jumbo-Instruct",
    "clarifai/ai21.complete.Jurassic2-Jumbo",
    "clarifai/ai21.complete.Jurassic2-Large",
    "clarifai/cohere.generate.cohere-generate-command",
    "clarifai/wizardlm.generate.wizardCoder-Python-34B",
    "clarifai/wizardlm.generate.wizardLM-70B",
    "clarifai/tiiuae.falcon.falcon-40b-instruct",
    "clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat",
    "clarifai/gcp.generate.code-gecko",
    "clarifai/gcp.generate.code-bison",
    "clarifai/mistralai.completion.mistral-7B-OpenOrca",
    "clarifai/mistralai.completion.openHermes-2-mistral-7B",
    "clarifai/wizardlm.generate.wizardLM-13B",
    "clarifai/huggingface-research.zephyr.zephyr-7B-alpha",
    "clarifai/wizardlm.generate.wizardCoder-15B",
    "clarifai/microsoft.text-generation.phi-1_5",
    "clarifai/databricks.Dolly-v2.dolly-v2-12b",
    "clarifai/bigcode.code.StarCoder",
    "clarifai/salesforce.xgen.xgen-7b-8k-instruct",
    "clarifai/mosaicml.mpt.mpt-7b-instruct",
    "clarifai/anthropic.completion.claude-3-opus",
    "clarifai/anthropic.completion.claude-3-sonnet",
    "clarifai/gcp.generate.gemini-1_5-pro",
    "clarifai/gcp.generate.imagen-2",
    "clarifai/salesforce.blip.general-english-image-caption-blip-2",
]


huggingface_models: List = [
    "meta-llama/Llama-2-7b-hf",
    "meta-llama/Llama-2-7b-chat-hf",
    "meta-llama/Llama-2-13b-hf",
    "meta-llama/Llama-2-13b-chat-hf",
    "meta-llama/Llama-2-70b-hf",
    "meta-llama/Llama-2-70b-chat-hf",
    "meta-llama/Llama-2-7b",
    "meta-llama/Llama-2-7b-chat",
    "meta-llama/Llama-2-13b",
    "meta-llama/Llama-2-13b-chat",
    "meta-llama/Llama-2-70b",
    "meta-llama/Llama-2-70b-chat",
]  # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers
empower_models = [
    "empower/empower-functions",
    "empower/empower-functions-small",
]

together_ai_models: List = [
    # llama llms - chat
    "togethercomputer/llama-2-70b-chat",
    # llama llms - language / instruct
    "togethercomputer/llama-2-70b",
    "togethercomputer/LLaMA-2-7B-32K",
    "togethercomputer/Llama-2-7B-32K-Instruct",
    "togethercomputer/llama-2-7b",
    # falcon llms
    "togethercomputer/falcon-40b-instruct",
    "togethercomputer/falcon-7b-instruct",
    # alpaca
    "togethercomputer/alpaca-7b",
    # chat llms
    "HuggingFaceH4/starchat-alpha",
    # code llms
    "togethercomputer/CodeLlama-34b",
    "togethercomputer/CodeLlama-34b-Instruct",
    "togethercomputer/CodeLlama-34b-Python",
    "defog/sqlcoder",
    "NumbersStation/nsql-llama-2-7B",
    "WizardLM/WizardCoder-15B-V1.0",
    "WizardLM/WizardCoder-Python-34B-V1.0",
    # language llms
    "NousResearch/Nous-Hermes-Llama2-13b",
    "Austism/chronos-hermes-13b",
    "upstage/SOLAR-0-70b-16bit",
    "WizardLM/WizardLM-70B-V1.0",
]  # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...)


baseten_models: List = [
    "qvv0xeq",
    "q841o8w",
    "31dxrj3",
]  # FALCON 7B  # WizardLM  # Mosaic ML

featherless_ai_models: List = [
    "featherless-ai/Qwerky-72B",
    "featherless-ai/Qwerky-QwQ-32B",
    "Qwen/Qwen2.5-72B-Instruct",
    "all-hands/openhands-lm-32b-v0.1",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "deepseek-ai/DeepSeek-V3-0324",
    "mistralai/Mistral-Small-24B-Instruct-2501",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "ProdeusUnity/Stellar-Odyssey-12b-v0.0",
]

nebius_models: List = [
    "Qwen/Qwen3-235B-A22B",
    "Qwen/Qwen3-30B-A3B-fast",
    "Qwen/Qwen3-32B",
    "Qwen/Qwen3-14B",
    "nvidia/Llama-3_1-Nemotron-Ultra-253B-v1",
    "deepseek-ai/DeepSeek-V3-0324",
    "deepseek-ai/DeepSeek-V3-0324-fast",
    "deepseek-ai/DeepSeek-R1",
    "deepseek-ai/DeepSeek-R1-fast",
    "meta-llama/Llama-3.3-70B-Instruct-fast",
    "Qwen/Qwen2.5-32B-Instruct-fast",
    "Qwen/Qwen2.5-Coder-32B-Instruct-fast",
]

nebius_embedding_models: List = [
    "BAAI/bge-en-icl",
    "BAAI/bge-multilingual-gemma2",
    "intfloat/e5-mistral-7b-instruct",
]

BEDROCK_INVOKE_PROVIDERS_LITERAL = Literal[
    "cohere",
    "anthropic",
    "mistral",
    "amazon",
    "meta",
    "llama",
    "ai21",
    "nova",
    "deepseek_r1",
]

open_ai_embedding_models: List = ["text-embedding-ada-002"]
cohere_embedding_models: List = [
    "embed-v4.0",
    "embed-english-v3.0",
    "embed-english-light-v3.0",
    "embed-multilingual-v3.0",
    "embed-english-v2.0",
    "embed-english-light-v2.0",
    "embed-multilingual-v2.0",
]
bedrock_embedding_models: List = [
    "amazon.titan-embed-text-v1",
    "cohere.embed-english-v3",
    "cohere.embed-multilingual-v3",
]

known_tokenizer_config = {
    "mistralai/Mistral-7B-Instruct-v0.1": {
        "tokenizer": {
            "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
            "bos_token": "<s>",
            "eos_token": "</s>",
        },
        "status": "success",
    },
    "meta-llama/Meta-Llama-3-8B-Instruct": {
        "tokenizer": {
            "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
            "bos_token": "<|begin_of_text|>",
            "eos_token": "",
        },
        "status": "success",
    },
    "deepseek-r1/deepseek-r1-7b-instruct": {
        "tokenizer": {
            "add_bos_token": True,
            "add_eos_token": False,
            "bos_token": {
                "__type": "AddedToken",
                "content": "<|begin▁of▁sentence|>",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "clean_up_tokenization_spaces": False,
            "eos_token": {
                "__type": "AddedToken",
                "content": "<|end▁of▁sentence|>",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "legacy": True,
            "model_max_length": 16384,
            "pad_token": {
                "__type": "AddedToken",
                "content": "<|end▁of▁sentence|>",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "sp_model_kwargs": {},
            "unk_token": None,
            "tokenizer_class": "LlamaTokenizerFast",
            "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
        },
        "status": "success",
    },
}


OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"]
HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = int(
    os.getenv("HUMANLOOP_PROMPT_CACHE_TTL_SECONDS", 60)
)  # 1 minute
RESPONSE_FORMAT_TOOL_NAME = "json_tool_call"  # default tool name used when converting response format to tool call

########################### Logging Callback Constants ###########################
AZURE_STORAGE_MSFT_VERSION = "2019-07-07"
PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES = int(
    os.getenv("PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES", 5)
)
MCP_TOOL_NAME_PREFIX = "mcp_tool"
MAXIMUM_TRACEBACK_LINES_TO_LOG = int(os.getenv("MAXIMUM_TRACEBACK_LINES_TO_LOG", 100))

########################### LiteLLM Proxy Specific Constants ###########################
########################################################################################
MAX_SPENDLOG_ROWS_TO_QUERY = int(
    os.getenv("MAX_SPENDLOG_ROWS_TO_QUERY", 1_000_000)
)  # if spendLogs has more than 1M rows, do not query the DB
DEFAULT_SOFT_BUDGET = float(
    os.getenv("DEFAULT_SOFT_BUDGET", 50.0)
)  # by default all litellm proxy keys have a soft budget of 50.0
# makes it clear this is a rate limit error for a litellm virtual key
RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash"

# pass through route constansts
BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [
    "agents/",
    "knowledgebases/",
    "flows/",
    "retrieveAndGenerate/",
    "rerank/",
    "generateQuery/",
    "optimize-prompt/",
]

BATCH_STATUS_POLL_INTERVAL_SECONDS = int(
    os.getenv("BATCH_STATUS_POLL_INTERVAL_SECONDS", 3600)
)  # 1 hour
BATCH_STATUS_POLL_MAX_ATTEMPTS = int(
    os.getenv("BATCH_STATUS_POLL_MAX_ATTEMPTS", 24)
)  # for 24 hours

HEALTH_CHECK_TIMEOUT_SECONDS = int(
    os.getenv("HEALTH_CHECK_TIMEOUT_SECONDS", 60)
)  # 60 seconds

UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard"
LITELLM_PROXY_ADMIN_NAME = "default_user_id"

########################### DB CRON JOB NAMES ###########################
DB_SPEND_UPDATE_JOB_NAME = "db_spend_update_job"
PROMETHEUS_EMIT_BUDGET_METRICS_JOB_NAME = "prometheus_emit_budget_metrics"
SPEND_LOG_CLEANUP_JOB_NAME = "spend_log_cleanup"
SPEND_LOG_RUN_LOOPS = int(os.getenv("SPEND_LOG_RUN_LOOPS", 500))
SPEND_LOG_CLEANUP_BATCH_SIZE = int(os.getenv("SPEND_LOG_CLEANUP_BATCH_SIZE", 1000))
DEFAULT_CRON_JOB_LOCK_TTL_SECONDS = int(
    os.getenv("DEFAULT_CRON_JOB_LOCK_TTL_SECONDS", 60)
)  # 1 minute
PROXY_BUDGET_RESCHEDULER_MIN_TIME = int(
    os.getenv("PROXY_BUDGET_RESCHEDULER_MIN_TIME", 597)
)
PROXY_BUDGET_RESCHEDULER_MAX_TIME = int(
    os.getenv("PROXY_BUDGET_RESCHEDULER_MAX_TIME", 605)
)
PROXY_BATCH_WRITE_AT = int(os.getenv("PROXY_BATCH_WRITE_AT", 10))  # in seconds
DEFAULT_HEALTH_CHECK_INTERVAL = int(
    os.getenv("DEFAULT_HEALTH_CHECK_INTERVAL", 300)
)  # 5 minutes
PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS = int(
    os.getenv("PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS", 9)
)
DEFAULT_MODEL_CREATED_AT_TIME = int(
    os.getenv("DEFAULT_MODEL_CREATED_AT_TIME", 1677610602)
)  # returns on `/models` endpoint
DEFAULT_SLACK_ALERTING_THRESHOLD = int(
    os.getenv("DEFAULT_SLACK_ALERTING_THRESHOLD", 300)
)
MAX_TEAM_LIST_LIMIT = int(os.getenv("MAX_TEAM_LIST_LIMIT", 20))
DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD = float(
    os.getenv("DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD", 0.7)
)
LENGTH_OF_LITELLM_GENERATED_KEY = int(os.getenv("LENGTH_OF_LITELLM_GENERATED_KEY", 16))
SECRET_MANAGER_REFRESH_INTERVAL = int(
    os.getenv("SECRET_MANAGER_REFRESH_INTERVAL", 86400)
)
LITELLM_SETTINGS_SAFE_DB_OVERRIDES = ["default_internal_user_params"]
SPECIAL_LITELLM_AUTH_TOKEN = ["ui-token"]
DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL = int(
    os.getenv("DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL", 60)
)