File size: 28,059 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
import asyncio
import contextvars
from functools import partial
from typing import Any, Coroutine, Dict, Literal, Optional, Union, cast

import httpx

import litellm
from litellm import Logging, client, exception_type, get_litellm_params
from litellm.constants import DEFAULT_IMAGE_ENDPOINT_MODEL
from litellm.constants import request_timeout as DEFAULT_REQUEST_TIMEOUT
from litellm.exceptions import LiteLLMUnknownProvider
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.litellm_core_utils.mock_functions import mock_image_generation
from litellm.llms.base_llm import BaseImageEditConfig, BaseImageGenerationConfig
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.llms.custom_llm import CustomLLM

#################### Initialize provider clients ####################
from litellm.main import (
    azure_chat_completions,
    base_llm_aiohttp_handler,
    base_llm_http_handler,
    bedrock_image_generation,
    openai_chat_completions,
    openai_image_variations,
    vertex_image_generation,
)
from litellm.secret_managers.main import get_secret_str
from litellm.types.images.main import ImageEditOptionalRequestParams
from litellm.types.llms.openai import ImageGenerationRequestQuality
from litellm.types.router import GenericLiteLLMParams
from litellm.types.utils import (
    LITELLM_IMAGE_VARIATION_PROVIDERS,
    FileTypes,
    LlmProviders,
    all_litellm_params,
)
from litellm.utils import (
    ImageResponse,
    ProviderConfigManager,
    get_llm_provider,
    get_optional_params_image_gen,
)

from .utils import ImageEditRequestUtils


##### Image Generation #######################
@client
async def aimage_generation(*args, **kwargs) -> ImageResponse:
    """
    Asynchronously calls the `image_generation` function with the given arguments and keyword arguments.

    Parameters:
    - `args` (tuple): Positional arguments to be passed to the `image_generation` function.
    - `kwargs` (dict): Keyword arguments to be passed to the `image_generation` function.

    Returns:
    - `response` (Any): The response returned by the `image_generation` function.
    """
    loop = asyncio.get_event_loop()
    model = args[0] if len(args) > 0 else kwargs["model"]
    ### PASS ARGS TO Image Generation ###
    kwargs["aimg_generation"] = True
    custom_llm_provider = None
    try:
        # Use a partial function to pass your keyword arguments
        func = partial(image_generation, *args, **kwargs)

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)

        _, custom_llm_provider, _, _ = get_llm_provider(
            model=model, api_base=kwargs.get("api_base", None)
        )

        # Await normally
        init_response = await loop.run_in_executor(None, func_with_context)
        if isinstance(init_response, dict) or isinstance(
            init_response, ImageResponse
        ):  ## CACHING SCENARIO
            if isinstance(init_response, dict):
                init_response = ImageResponse(**init_response)
            response = init_response
        elif asyncio.iscoroutine(init_response):
            response = await init_response  # type: ignore
        else:
            # Call the synchronous function using run_in_executor
            response = await loop.run_in_executor(None, func_with_context)
        return response
    except Exception as e:
        custom_llm_provider = custom_llm_provider or "openai"
        raise exception_type(
            model=model,
            custom_llm_provider=custom_llm_provider,
            original_exception=e,
            completion_kwargs=args,
            extra_kwargs=kwargs,
        )


@client
def image_generation(  # noqa: PLR0915
    prompt: str,
    model: Optional[str] = None,
    n: Optional[int] = None,
    quality: Optional[Union[str, ImageGenerationRequestQuality]] = None,
    response_format: Optional[str] = None,
    size: Optional[str] = None,
    style: Optional[str] = None,
    user: Optional[str] = None,
    timeout=600,  # default to 10 minutes
    api_key: Optional[str] = None,
    api_base: Optional[str] = None,
    api_version: Optional[str] = None,
    custom_llm_provider=None,
    **kwargs,
) -> ImageResponse:
    """
    Maps the https://api.openai.com/v1/images/generations endpoint.

    Currently supports just Azure + OpenAI.
    """
    try:
        args = locals()
        aimg_generation = kwargs.get("aimg_generation", False)
        litellm_call_id = kwargs.get("litellm_call_id", None)
        logger_fn = kwargs.get("logger_fn", None)
        mock_response: Optional[str] = kwargs.get("mock_response", None)  # type: ignore
        proxy_server_request = kwargs.get("proxy_server_request", None)
        azure_ad_token_provider = kwargs.get("azure_ad_token_provider", None)
        model_info = kwargs.get("model_info", None)
        metadata = kwargs.get("metadata", {})
        litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj")  # type: ignore
        client = kwargs.get("client", None)
        extra_headers = kwargs.get("extra_headers", None)
        headers: dict = kwargs.get("headers", None) or {}
        base_model = kwargs.get("base_model", None)
        if extra_headers is not None:
            headers.update(extra_headers)
        model_response: ImageResponse = litellm.utils.ImageResponse()
        dynamic_api_key: Optional[str] = None
        if model is not None or custom_llm_provider is not None:
            model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
                model=model,  # type: ignore
                custom_llm_provider=custom_llm_provider,
                api_base=api_base,
            )
        else:
            model = "dall-e-2"
            custom_llm_provider = "openai"  # default to dall-e-2 on openai
        model_response._hidden_params["model"] = model
        openai_params = [
            "user",
            "request_timeout",
            "api_base",
            "api_version",
            "api_key",
            "deployment_id",
            "organization",
            "base_url",
            "default_headers",
            "timeout",
            "max_retries",
            "n",
            "quality",
            "size",
            "style",
        ]
        litellm_params = all_litellm_params
        default_params = openai_params + litellm_params
        non_default_params = {
            k: v for k, v in kwargs.items() if k not in default_params
        }  # model-specific params - pass them straight to the model/provider

        image_generation_config: Optional[BaseImageGenerationConfig] = None
        if (
            custom_llm_provider is not None
            and custom_llm_provider in LlmProviders._member_map_.values()
        ):
            image_generation_config = (
                ProviderConfigManager.get_provider_image_generation_config(
                    model=base_model or model,
                    provider=LlmProviders(custom_llm_provider),
                )
            )

        optional_params = get_optional_params_image_gen(
            model=base_model or model,
            n=n,
            quality=quality,
            response_format=response_format,
            size=size,
            style=style,
            user=user,
            custom_llm_provider=custom_llm_provider,
            provider_config=image_generation_config,
            **non_default_params,
        )

        litellm_params_dict = get_litellm_params(**kwargs)

        logging: Logging = litellm_logging_obj
        logging.update_environment_variables(
            model=model,
            user=user,
            optional_params=optional_params,
            litellm_params={
                "timeout": timeout,
                "azure": False,
                "litellm_call_id": litellm_call_id,
                "logger_fn": logger_fn,
                "proxy_server_request": proxy_server_request,
                "model_info": model_info,
                "metadata": metadata,
                "preset_cache_key": None,
                "stream_response": {},
            },
            custom_llm_provider=custom_llm_provider,
        )
        if "custom_llm_provider" not in logging.model_call_details:
            logging.model_call_details["custom_llm_provider"] = custom_llm_provider
        if mock_response is not None:
            return mock_image_generation(model=model, mock_response=mock_response)

        if custom_llm_provider == "azure":
            # azure configs
            api_type = get_secret_str("AZURE_API_TYPE") or "azure"

            api_base = api_base or litellm.api_base or get_secret_str("AZURE_API_BASE")

            api_version = (
                api_version
                or litellm.api_version
                or get_secret_str("AZURE_API_VERSION")
            )

            api_key = (
                api_key
                or litellm.api_key
                or litellm.azure_key
                or get_secret_str("AZURE_OPENAI_API_KEY")
                or get_secret_str("AZURE_API_KEY")
            )

            azure_ad_token = optional_params.pop(
                "azure_ad_token", None
            ) or get_secret_str("AZURE_AD_TOKEN")

            default_headers = {
                "Content-Type": "application/json;",
                "api-key": api_key,
            }
            for k, v in default_headers.items():
                if k not in headers:
                    headers[k] = v

            model_response = azure_chat_completions.image_generation(
                model=model,
                prompt=prompt,
                timeout=timeout,
                api_key=api_key,
                api_base=api_base,
                azure_ad_token=azure_ad_token,
                azure_ad_token_provider=azure_ad_token_provider,
                logging_obj=litellm_logging_obj,
                optional_params=optional_params,
                model_response=model_response,
                api_version=api_version,
                aimg_generation=aimg_generation,
                client=client,
                headers=headers,
                litellm_params=litellm_params_dict,
            )
        elif (
            custom_llm_provider == "openai"
            or custom_llm_provider in litellm.openai_compatible_providers
        ):
            model_response = openai_chat_completions.image_generation(
                model=model,
                prompt=prompt,
                timeout=timeout,
                api_key=api_key or dynamic_api_key,
                api_base=api_base,
                logging_obj=litellm_logging_obj,
                optional_params=optional_params,
                model_response=model_response,
                aimg_generation=aimg_generation,
                client=client,
            )
        elif custom_llm_provider == "bedrock":
            if model is None:
                raise Exception("Model needs to be set for bedrock")
            model_response = bedrock_image_generation.image_generation(  # type: ignore
                model=model,
                prompt=prompt,
                timeout=timeout,
                logging_obj=litellm_logging_obj,
                optional_params=optional_params,
                model_response=model_response,
                aimg_generation=aimg_generation,
                client=client,
            )
        elif custom_llm_provider == "vertex_ai":
            vertex_ai_project = (
                optional_params.pop("vertex_project", None)
                or optional_params.pop("vertex_ai_project", None)
                or litellm.vertex_project
                or get_secret_str("VERTEXAI_PROJECT")
            )
            vertex_ai_location = (
                optional_params.pop("vertex_location", None)
                or optional_params.pop("vertex_ai_location", None)
                or litellm.vertex_location
                or get_secret_str("VERTEXAI_LOCATION")
            )
            vertex_credentials = (
                optional_params.pop("vertex_credentials", None)
                or optional_params.pop("vertex_ai_credentials", None)
                or get_secret_str("VERTEXAI_CREDENTIALS")
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret_str("VERTEXAI_API_BASE")
                or get_secret_str("VERTEX_API_BASE")
            )

            model_response = vertex_image_generation.image_generation(
                model=model,
                prompt=prompt,
                timeout=timeout,
                logging_obj=litellm_logging_obj,
                optional_params=optional_params,
                model_response=model_response,
                vertex_project=vertex_ai_project,
                vertex_location=vertex_ai_location,
                vertex_credentials=vertex_credentials,
                aimg_generation=aimg_generation,
                api_base=api_base,
                client=client,
            )
        elif (
            custom_llm_provider in litellm._custom_providers
        ):  # Assume custom LLM provider
            # Get the Custom Handler
            custom_handler: Optional[CustomLLM] = None
            for item in litellm.custom_provider_map:
                if item["provider"] == custom_llm_provider:
                    custom_handler = item["custom_handler"]

            if custom_handler is None:
                raise LiteLLMUnknownProvider(
                    model=model, custom_llm_provider=custom_llm_provider
                )

            ## ROUTE LLM CALL ##
            if aimg_generation is True:
                async_custom_client: Optional[AsyncHTTPHandler] = None
                if client is not None and isinstance(client, AsyncHTTPHandler):
                    async_custom_client = client

                ## CALL FUNCTION
                model_response = custom_handler.aimage_generation(  # type: ignore
                    model=model,
                    prompt=prompt,
                    api_key=api_key,
                    api_base=api_base,
                    model_response=model_response,
                    optional_params=optional_params,
                    logging_obj=litellm_logging_obj,
                    timeout=timeout,
                    client=async_custom_client,
                )
            else:
                custom_client: Optional[HTTPHandler] = None
                if client is not None and isinstance(client, HTTPHandler):
                    custom_client = client

                ## CALL FUNCTION
                model_response = custom_handler.image_generation(
                    model=model,
                    prompt=prompt,
                    api_key=api_key,
                    api_base=api_base,
                    model_response=model_response,
                    optional_params=optional_params,
                    logging_obj=litellm_logging_obj,
                    timeout=timeout,
                    client=custom_client,
                )

        return model_response
    except Exception as e:
        ## Map to OpenAI Exception
        raise exception_type(
            model=model,
            custom_llm_provider=custom_llm_provider,
            original_exception=e,
            completion_kwargs=locals(),
            extra_kwargs=kwargs,
        )


@client
async def aimage_variation(*args, **kwargs) -> ImageResponse:
    """
    Asynchronously calls the `image_variation` function with the given arguments and keyword arguments.

    Parameters:
    - `args` (tuple): Positional arguments to be passed to the `image_variation` function.
    - `kwargs` (dict): Keyword arguments to be passed to the `image_variation` function.

    Returns:
    - `response` (Any): The response returned by the `image_variation` function.
    """
    loop = asyncio.get_event_loop()
    model = kwargs.get("model", None)
    custom_llm_provider = kwargs.get("custom_llm_provider", None)
    ### PASS ARGS TO Image Generation ###
    kwargs["async_call"] = True
    try:
        # Use a partial function to pass your keyword arguments
        func = partial(image_variation, *args, **kwargs)

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)

        if custom_llm_provider is None and model is not None:
            _, custom_llm_provider, _, _ = get_llm_provider(
                model=model, api_base=kwargs.get("api_base", None)
            )

        # Await normally
        init_response = await loop.run_in_executor(None, func_with_context)
        if isinstance(init_response, dict) or isinstance(
            init_response, ImageResponse
        ):  ## CACHING SCENARIO
            if isinstance(init_response, dict):
                init_response = ImageResponse(**init_response)
            response = init_response
        elif asyncio.iscoroutine(init_response):
            response = await init_response  # type: ignore
        else:
            # Call the synchronous function using run_in_executor
            response = await loop.run_in_executor(None, func_with_context)
        return response
    except Exception as e:
        custom_llm_provider = custom_llm_provider or "openai"
        raise exception_type(
            model=model,
            custom_llm_provider=custom_llm_provider,
            original_exception=e,
            completion_kwargs=args,
            extra_kwargs=kwargs,
        )


@client
def image_variation(
    image: FileTypes,
    model: str = "dall-e-2",  # set to dall-e-2 by default - like OpenAI.
    n: int = 1,
    response_format: Literal["url", "b64_json"] = "url",
    size: Optional[str] = None,
    user: Optional[str] = None,
    **kwargs,
) -> ImageResponse:
    # get non-default params
    client = kwargs.get("client", None)
    # get logging object
    litellm_logging_obj = cast(LiteLLMLoggingObj, kwargs.get("litellm_logging_obj"))

    # get the litellm params
    litellm_params = get_litellm_params(**kwargs)
    # get the custom llm provider
    model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(
        model=model,
        custom_llm_provider=litellm_params.get("custom_llm_provider", None),
        api_base=litellm_params.get("api_base", None),
        api_key=litellm_params.get("api_key", None),
    )

    # route to the correct provider w/ the params
    try:
        llm_provider = LlmProviders(custom_llm_provider)
        image_variation_provider = LITELLM_IMAGE_VARIATION_PROVIDERS(llm_provider)
    except ValueError:
        raise ValueError(
            f"Invalid image variation provider: {custom_llm_provider}. Supported providers are: {LITELLM_IMAGE_VARIATION_PROVIDERS}"
        )
    model_response = ImageResponse()

    response: Optional[ImageResponse] = None

    provider_config = ProviderConfigManager.get_provider_model_info(
        model=model or "",  # openai defaults to dall-e-2
        provider=llm_provider,
    )

    if provider_config is None:
        raise ValueError(
            f"image variation provider has no known model info config - required for getting api keys, etc.: {custom_llm_provider}. Supported providers are: {LITELLM_IMAGE_VARIATION_PROVIDERS}"
        )

    api_key = provider_config.get_api_key(litellm_params.get("api_key", None))
    api_base = provider_config.get_api_base(litellm_params.get("api_base", None))

    if image_variation_provider == LITELLM_IMAGE_VARIATION_PROVIDERS.OPENAI:
        if api_key is None:
            raise ValueError("API key is required for OpenAI image variations")
        if api_base is None:
            raise ValueError("API base is required for OpenAI image variations")

        response = openai_image_variations.image_variations(
            model_response=model_response,
            api_key=api_key,
            api_base=api_base,
            model=model,
            image=image,
            timeout=litellm_params.get("timeout", None),
            custom_llm_provider=custom_llm_provider,
            logging_obj=litellm_logging_obj,
            optional_params={},
            litellm_params=litellm_params,
        )
    elif image_variation_provider == LITELLM_IMAGE_VARIATION_PROVIDERS.TOPAZ:
        if api_key is None:
            raise ValueError("API key is required for Topaz image variations")
        if api_base is None:
            raise ValueError("API base is required for Topaz image variations")

        response = base_llm_aiohttp_handler.image_variations(
            model_response=model_response,
            api_key=api_key,
            api_base=api_base,
            model=model,
            image=image,
            timeout=litellm_params.get("timeout", None) or DEFAULT_REQUEST_TIMEOUT,
            custom_llm_provider=custom_llm_provider,
            logging_obj=litellm_logging_obj,
            optional_params={},
            litellm_params=litellm_params,
            client=client,
        )

    # return the response
    if response is None:
        raise ValueError(
            f"Invalid image variation provider: {custom_llm_provider}. Supported providers are: {LITELLM_IMAGE_VARIATION_PROVIDERS}"
        )
    return response


@client
def image_edit(
    image: FileTypes,
    prompt: str,
    model: Optional[str] = None,
    mask: Optional[str] = None,
    n: Optional[int] = None,
    quality: Optional[Union[str, ImageGenerationRequestQuality]] = None,
    response_format: Optional[str] = None,
    size: Optional[str] = None,
    user: Optional[str] = None,
    # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
    # The extra values given here take precedence over values defined on the client or passed to this method.
    extra_headers: Optional[Dict[str, Any]] = None,
    extra_query: Optional[Dict[str, Any]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    timeout: Optional[Union[float, httpx.Timeout]] = None,
    # LiteLLM specific params,
    custom_llm_provider: Optional[str] = None,
    **kwargs,
) -> Union[ImageResponse, Coroutine[Any, Any, ImageResponse]]:
    """
    Maps the image edit functionality, similar to OpenAI's images/edits endpoint.
    """
    local_vars = locals()
    try:
        litellm_logging_obj: LiteLLMLoggingObj = kwargs.get("litellm_logging_obj")  # type: ignore
        litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
        _is_async = kwargs.pop("async_call", False) is True

        # get llm provider logic
        litellm_params = GenericLiteLLMParams(**kwargs)
        model, custom_llm_provider, _, _ = get_llm_provider(
            model=model or DEFAULT_IMAGE_ENDPOINT_MODEL,
            custom_llm_provider=custom_llm_provider,
        )

        # get provider config
        image_edit_provider_config: Optional[
            BaseImageEditConfig
        ] = ProviderConfigManager.get_provider_image_edit_config(
            model=model,
            provider=litellm.LlmProviders(custom_llm_provider),
        )

        if image_edit_provider_config is None:
            raise ValueError(f"image edit is not supported for {custom_llm_provider}")

        local_vars.update(kwargs)
        # Get ImageEditOptionalRequestParams with only valid parameters
        image_edit_optional_params: ImageEditOptionalRequestParams = (
            ImageEditRequestUtils.get_requested_image_edit_optional_param(local_vars)
        )

        # Get optional parameters for the responses API
        image_edit_request_params: Dict = (
            ImageEditRequestUtils.get_optional_params_image_edit(
                model=model,
                image_edit_provider_config=image_edit_provider_config,
                image_edit_optional_params=image_edit_optional_params,
            )
        )

        # Pre Call logging
        litellm_logging_obj.update_environment_variables(
            model=model,
            user=user,
            optional_params=dict(image_edit_request_params),
            litellm_params={
                "litellm_call_id": litellm_call_id,
                **image_edit_request_params,
            },
            custom_llm_provider=custom_llm_provider,
        )

        # Call the handler with _is_async flag instead of directly calling the async handler
        return base_llm_http_handler.image_edit_handler(
            model=model,
            image=image,
            prompt=prompt,
            image_edit_provider_config=image_edit_provider_config,
            image_edit_optional_request_params=image_edit_request_params,
            custom_llm_provider=custom_llm_provider,
            litellm_params=litellm_params,
            logging_obj=litellm_logging_obj,
            extra_headers=extra_headers,
            extra_body=extra_body,
            timeout=timeout or DEFAULT_REQUEST_TIMEOUT,
            _is_async=_is_async,
            client=kwargs.get("client"),
        )

    except Exception as e:
        raise litellm.exception_type(
            model=model,
            custom_llm_provider=custom_llm_provider,
            original_exception=e,
            completion_kwargs=local_vars,
            extra_kwargs=kwargs,
        )


@client
async def aimage_edit(
    image: FileTypes,
    model: str,
    prompt: str,
    mask: Optional[str] = None,
    n: Optional[int] = None,
    quality: Optional[Union[str, ImageGenerationRequestQuality]] = None,
    response_format: Optional[str] = None,
    size: Optional[str] = None,
    user: Optional[str] = None,
    # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
    # The extra values given here take precedence over values defined on the client or passed to this method.
    extra_headers: Optional[Dict[str, Any]] = None,
    extra_query: Optional[Dict[str, Any]] = None,
    extra_body: Optional[Dict[str, Any]] = None,
    timeout: Optional[Union[float, httpx.Timeout]] = None,
    # LiteLLM specific params,
    custom_llm_provider: Optional[str] = None,
    **kwargs,
) -> ImageResponse:
    """
    Asynchronously calls the `image_edit` function with the given arguments and keyword arguments.

    Parameters:
    - `args` (tuple): Positional arguments to be passed to the `image_edit` function.
    - `kwargs` (dict): Keyword arguments to be passed to the `image_edit` function.

    Returns:
    - `response` (Any): The response returned by the `image_edit` function.
    """
    local_vars = locals()
    try:
        loop = asyncio.get_event_loop()
        kwargs["async_call"] = True

        # get custom llm provider so we can use this for mapping exceptions
        if custom_llm_provider is None:
            _, custom_llm_provider, _, _ = litellm.get_llm_provider(
                model=model, api_base=local_vars.get("base_url", None)
            )

        func = partial(
            image_edit,
            image=image,
            prompt=prompt,
            mask=mask,
            model=model,
            n=n,
            quality=quality,
            response_format=response_format,
            size=size,
            user=user,
            timeout=timeout,
            custom_llm_provider=custom_llm_provider,
            **kwargs,
        )

        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)
        init_response = await loop.run_in_executor(None, func_with_context)

        if asyncio.iscoroutine(init_response):
            response = await init_response
        else:
            response = init_response

        return response
    except Exception as e:
        raise litellm.exception_type(
            model=model,
            custom_llm_provider=custom_llm_provider,
            original_exception=e,
            completion_kwargs=local_vars,
            extra_kwargs=kwargs,
        )