Spaces:
Configuration error
Configuration error
File size: 19,186 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
"""
Transformation for Bedrock Invoke Agent
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent-runtime_InvokeAgent.html
"""
import base64
import json
import uuid
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import httpx
from litellm._logging import verbose_logger
from litellm.litellm_core_utils.prompt_templates.common_utils import (
convert_content_list_to_str,
)
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
from litellm.llms.bedrock.common_utils import BedrockError
from litellm.types.llms.bedrock_invoke_agents import (
InvokeAgentChunkPayload,
InvokeAgentEvent,
InvokeAgentEventHeaders,
InvokeAgentEventList,
InvokeAgentTrace,
InvokeAgentTracePayload,
InvokeAgentUsage,
)
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import Choices, Message, ModelResponse
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class AmazonInvokeAgentConfig(BaseConfig, BaseAWSLLM):
def __init__(self, **kwargs):
BaseConfig.__init__(self, **kwargs)
BaseAWSLLM.__init__(self, **kwargs)
def get_supported_openai_params(self, model: str) -> List[str]:
"""
This is a base invoke agent model mapping. For Invoke Agent - define a bedrock provider specific config that extends this class.
Bedrock Invoke Agents has 0 OpenAI compatible params
As of May 29th, 2025 - they don't support streaming.
"""
return []
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
"""
This is a base invoke agent model mapping. For Invoke Agent - define a bedrock provider specific config that extends this class.
"""
return optional_params
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
Get the complete url for the request
"""
### SET RUNTIME ENDPOINT ###
aws_bedrock_runtime_endpoint = optional_params.get(
"aws_bedrock_runtime_endpoint", None
) # https://bedrock-runtime.{region_name}.amazonaws.com
endpoint_url, _ = self.get_runtime_endpoint(
api_base=api_base,
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
aws_region_name=self._get_aws_region_name(
optional_params=optional_params, model=model
),
endpoint_type="agent",
)
agent_id, agent_alias_id = self._get_agent_id_and_alias_id(model)
session_id = self._get_session_id(optional_params)
endpoint_url = f"{endpoint_url}/agents/{agent_id}/agentAliases/{agent_alias_id}/sessions/{session_id}/text"
return endpoint_url
def sign_request(
self,
headers: dict,
optional_params: dict,
request_data: dict,
api_base: str,
model: Optional[str] = None,
stream: Optional[bool] = None,
fake_stream: Optional[bool] = None,
) -> Tuple[dict, Optional[bytes]]:
return self._sign_request(
service_name="bedrock",
headers=headers,
optional_params=optional_params,
request_data=request_data,
api_base=api_base,
model=model,
stream=stream,
fake_stream=fake_stream,
)
def _get_agent_id_and_alias_id(self, model: str) -> tuple[str, str]:
"""
model = "agent/L1RT58GYRW/MFPSBCXYTW"
agent_id = "L1RT58GYRW"
agent_alias_id = "MFPSBCXYTW"
"""
# Split the model string by '/' and extract components
parts = model.split("/")
if len(parts) != 3 or parts[0] != "agent":
raise ValueError(
"Invalid model format. Expected format: 'model=agent/AGENT_ID/ALIAS_ID'"
)
return parts[1], parts[2] # Return (agent_id, agent_alias_id)
def _get_session_id(self, optional_params: dict) -> str:
""" """
return optional_params.get("sessionID", None) or str(uuid.uuid4())
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
# use the last message content as the query
query: str = convert_content_list_to_str(messages[-1])
return {
"inputText": query,
"enableTrace": True,
**optional_params,
}
def _parse_aws_event_stream(self, raw_content: bytes) -> InvokeAgentEventList:
"""
Parse AWS event stream format using boto3/botocore's built-in parser.
This is the same approach used in the existing AWSEventStreamDecoder.
"""
try:
from botocore.eventstream import EventStreamBuffer
from botocore.parsers import EventStreamJSONParser
except ImportError:
raise ImportError("boto3/botocore is required for AWS event stream parsing")
events: InvokeAgentEventList = []
parser = EventStreamJSONParser()
event_stream_buffer = EventStreamBuffer()
# Add the entire response to the buffer
event_stream_buffer.add_data(raw_content)
# Process all events in the buffer
for event in event_stream_buffer:
try:
headers = self._extract_headers_from_event(event)
event_type = headers.get("event_type", "")
if event_type == "chunk":
# Handle chunk events specially - they contain decoded content, not JSON
message = self._parse_message_from_event(event, parser)
parsed_event: InvokeAgentEvent = InvokeAgentEvent()
if message:
# For chunk events, create a payload with the decoded content
parsed_event = {
"headers": headers,
"payload": {
"bytes": base64.b64encode(
message.encode("utf-8")
).decode("utf-8")
}, # Re-encode for consistency
}
events.append(parsed_event)
elif event_type == "trace":
# Handle trace events normally - they contain JSON
message = self._parse_message_from_event(event, parser)
if message:
try:
event_data = json.loads(message)
parsed_event = {
"headers": headers,
"payload": event_data,
}
events.append(parsed_event)
except json.JSONDecodeError as e:
verbose_logger.warning(
f"Failed to parse trace event JSON: {e}"
)
else:
verbose_logger.debug(f"Unknown event type: {event_type}")
except Exception as e:
verbose_logger.error(f"Error processing event: {e}")
continue
return events
def _parse_message_from_event(self, event, parser) -> Optional[str]:
"""Extract message content from an AWS event, adapted from AWSEventStreamDecoder."""
try:
response_dict = event.to_response_dict()
verbose_logger.debug(f"Response dict: {response_dict}")
# Use the same response shape parsing as the existing decoder
parsed_response = parser.parse(
response_dict, self._get_response_stream_shape()
)
verbose_logger.debug(f"Parsed response: {parsed_response}")
if response_dict["status_code"] != 200:
decoded_body = response_dict["body"].decode()
if isinstance(decoded_body, dict):
error_message = decoded_body.get("message")
elif isinstance(decoded_body, str):
error_message = decoded_body
else:
error_message = ""
exception_status = response_dict["headers"].get(":exception-type")
error_message = exception_status + " " + error_message
raise BedrockError(
status_code=response_dict["status_code"],
message=(
json.dumps(error_message)
if isinstance(error_message, dict)
else error_message
),
)
if "chunk" in parsed_response:
chunk = parsed_response.get("chunk")
if not chunk:
return None
return chunk.get("bytes").decode()
else:
chunk = response_dict.get("body")
if not chunk:
return None
return chunk.decode()
except Exception as e:
verbose_logger.debug(f"Error parsing message from event: {e}")
return None
def _extract_headers_from_event(self, event) -> InvokeAgentEventHeaders:
"""Extract headers from an AWS event for categorization."""
try:
response_dict = event.to_response_dict()
headers = response_dict.get("headers", {})
# Extract the event-type and content-type headers that we care about
return InvokeAgentEventHeaders(
event_type=headers.get(":event-type", ""),
content_type=headers.get(":content-type", ""),
message_type=headers.get(":message-type", ""),
)
except Exception as e:
verbose_logger.debug(f"Error extracting headers: {e}")
return InvokeAgentEventHeaders(
event_type="", content_type="", message_type=""
)
def _get_response_stream_shape(self):
"""Get the response stream shape for parsing, reusing existing logic."""
try:
# Try to reuse the cached shape from the existing decoder
from litellm.llms.bedrock.chat.invoke_handler import (
get_response_stream_shape,
)
return get_response_stream_shape()
except ImportError:
# Fallback: create our own shape
try:
from botocore.loaders import Loader
from botocore.model import ServiceModel
loader = Loader()
bedrock_service_dict = loader.load_service_model(
"bedrock-runtime", "service-2"
)
bedrock_service_model = ServiceModel(bedrock_service_dict)
return bedrock_service_model.shape_for("ResponseStream")
except Exception as e:
verbose_logger.warning(f"Could not load response stream shape: {e}")
return None
def _extract_response_content(self, events: InvokeAgentEventList) -> str:
"""Extract the final response content from parsed events."""
response_parts = []
for event in events:
headers = event.get("headers", {})
payload = event.get("payload")
event_type = headers.get(
"event_type"
) # Note: using event_type not event-type
if event_type == "chunk" and payload:
# Extract base64 encoded content from chunk events
chunk_payload: InvokeAgentChunkPayload = payload # type: ignore
encoded_bytes = chunk_payload.get("bytes", "")
if encoded_bytes:
try:
decoded_content = base64.b64decode(encoded_bytes).decode(
"utf-8"
)
response_parts.append(decoded_content)
except Exception as e:
verbose_logger.warning(f"Failed to decode chunk content: {e}")
return "".join(response_parts)
def _extract_usage_info(self, events: InvokeAgentEventList) -> InvokeAgentUsage:
"""Extract token usage information from trace events."""
usage_info = InvokeAgentUsage(
inputTokens=0,
outputTokens=0,
model=None,
)
response_model: Optional[str] = None
for event in events:
if not self._is_trace_event(event):
continue
trace_data = self._get_trace_data(event)
if not trace_data:
continue
verbose_logger.debug(f"Trace event: {trace_data}")
# Extract usage from pre-processing trace
self._extract_and_update_preprocessing_usage(
trace_data=trace_data,
usage_info=usage_info,
)
# Extract model from orchestration trace
if response_model is None:
response_model = self._extract_orchestration_model(trace_data)
usage_info["model"] = response_model
return usage_info
def _is_trace_event(self, event: InvokeAgentEvent) -> bool:
"""Check if the event is a trace event."""
headers = event.get("headers", {})
event_type = headers.get("event_type")
payload = event.get("payload")
return event_type == "trace" and payload is not None
def _get_trace_data(self, event: InvokeAgentEvent) -> Optional[InvokeAgentTrace]:
"""Extract trace data from a trace event."""
payload = event.get("payload")
if not payload:
return None
trace_payload: InvokeAgentTracePayload = payload # type: ignore
return trace_payload.get("trace", {})
def _extract_and_update_preprocessing_usage(
self, trace_data: InvokeAgentTrace, usage_info: InvokeAgentUsage
) -> None:
"""Extract usage information from preprocessing trace."""
pre_processing = trace_data.get("preProcessingTrace", {})
if not pre_processing:
return
model_output = pre_processing.get("modelInvocationOutput", {})
if not model_output:
return
metadata = model_output.get("metadata", {})
if not metadata:
return
usage: Optional[Union[InvokeAgentUsage, Dict]] = metadata.get("usage", {})
if not usage:
return
usage_info["inputTokens"] += usage.get("inputTokens", 0)
usage_info["outputTokens"] += usage.get("outputTokens", 0)
def _extract_orchestration_model(
self, trace_data: InvokeAgentTrace
) -> Optional[str]:
"""Extract model information from orchestration trace."""
orchestration_trace = trace_data.get("orchestrationTrace", {})
if not orchestration_trace:
return None
model_invocation = orchestration_trace.get("modelInvocationInput", {})
if not model_invocation:
return None
return model_invocation.get("foundationModel")
def _build_model_response(
self,
content: str,
model: str,
usage_info: InvokeAgentUsage,
model_response: ModelResponse,
) -> ModelResponse:
"""Build the final ModelResponse object."""
# Create the message content
message = Message(content=content, role="assistant")
# Create choices
choice = Choices(finish_reason="stop", index=0, message=message)
# Update model response
model_response.choices = [choice]
model_response.model = usage_info.get("model", model)
# Add usage information if available
if usage_info:
from litellm.types.utils import Usage
usage = Usage(
prompt_tokens=usage_info.get("inputTokens", 0),
completion_tokens=usage_info.get("outputTokens", 0),
total_tokens=usage_info.get("inputTokens", 0)
+ usage_info.get("outputTokens", 0),
)
setattr(model_response, "usage", usage)
return model_response
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
try:
# Get the raw binary content
raw_content = raw_response.content
verbose_logger.debug(
f"Processing {len(raw_content)} bytes of AWS event stream data"
)
# Parse the AWS event stream format
events = self._parse_aws_event_stream(raw_content)
verbose_logger.debug(f"Parsed {len(events)} events from stream")
# Extract response content from chunk events
content = self._extract_response_content(events)
# Extract usage information from trace events
usage_info = self._extract_usage_info(events)
# Build and return the model response
return self._build_model_response(
content=content,
model=model,
usage_info=usage_info,
model_response=model_response,
)
except Exception as e:
verbose_logger.error(
f"Error processing Bedrock Invoke Agent response: {str(e)}"
)
raise BedrockError(
message=f"Error processing response: {str(e)}",
status_code=raw_response.status_code,
)
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
return headers
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return BedrockError(status_code=status_code, message=error_message)
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
return True
|