File size: 8,725 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Translates from OpenAI's `/v1/audio/transcriptions` to Deepgram's `/v1/listen`
"""

import io
from typing import List, Optional, Union
from urllib.parse import urlencode

from httpx import Headers, Response

from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import (
    AllMessageValues,
    OpenAIAudioTranscriptionOptionalParams,
)
from litellm.types.utils import FileTypes, TranscriptionResponse

from ...base_llm.audio_transcription.transformation import (
    BaseAudioTranscriptionConfig,
    LiteLLMLoggingObj,
)
from ..common_utils import DeepgramException


class DeepgramAudioTranscriptionConfig(BaseAudioTranscriptionConfig):
    def get_supported_openai_params(
        self, model: str
    ) -> List[OpenAIAudioTranscriptionOptionalParams]:
        return ["language"]

    def map_openai_params(
        self,
        non_default_params: dict,
        optional_params: dict,
        model: str,
        drop_params: bool,
    ) -> dict:
        supported_params = self.get_supported_openai_params(model)
        for k, v in non_default_params.items():
            if k in supported_params:
                optional_params[k] = v
        return optional_params

    def get_error_class(
        self, error_message: str, status_code: int, headers: Union[dict, Headers]
    ) -> BaseLLMException:
        return DeepgramException(
            message=error_message, status_code=status_code, headers=headers
        )

    def transform_audio_transcription_request(
        self,
        model: str,
        audio_file: FileTypes,
        optional_params: dict,
        litellm_params: dict,
    ) -> Union[dict, bytes]:
        """
        Processes the audio file input based on its type and returns the binary data.

        Args:
            audio_file: Can be a file path (str), a tuple (filename, file_content), or binary data (bytes).

        Returns:
            The binary data of the audio file.
        """
        binary_data: bytes  # Explicitly declare the type

        # Handle the audio file based on type
        if isinstance(audio_file, str):
            # If it's a file path
            with open(audio_file, "rb") as f:
                binary_data = f.read()  # `f.read()` always returns `bytes`
        elif isinstance(audio_file, tuple):
            # Handle tuple case
            _, file_content = audio_file[:2]
            if isinstance(file_content, str):
                with open(file_content, "rb") as f:
                    binary_data = f.read()  # `f.read()` always returns `bytes`
            elif isinstance(file_content, bytes):
                binary_data = file_content
            else:
                raise TypeError(
                    f"Unexpected type in tuple: {type(file_content)}. Expected str or bytes."
                )
        elif isinstance(audio_file, bytes):
            # Assume it's already binary data
            binary_data = audio_file
        elif isinstance(audio_file, io.BufferedReader) or isinstance(
            audio_file, io.BytesIO
        ):
            # Handle file-like objects
            binary_data = audio_file.read()

        else:
            raise TypeError(f"Unsupported type for audio_file: {type(audio_file)}")

        return binary_data

    def transform_audio_transcription_response(
        self,
        model: str,
        raw_response: Response,
        model_response: TranscriptionResponse,
        logging_obj: LiteLLMLoggingObj,
        request_data: dict,
        optional_params: dict,
        litellm_params: dict,
        api_key: Optional[str] = None,
    ) -> TranscriptionResponse:
        """
        Transforms the raw response from Deepgram to the TranscriptionResponse format
        """
        try:
            response_json = raw_response.json()

            # Get the first alternative from the first channel
            first_channel = response_json["results"]["channels"][0]
            first_alternative = first_channel["alternatives"][0]

            # Extract the full transcript
            text = first_alternative["transcript"]

            # Create TranscriptionResponse object
            response = TranscriptionResponse(text=text)

            # Add additional metadata matching OpenAI format
            response["task"] = "transcribe"
            response["language"] = (
                "english"  # Deepgram auto-detects but doesn't return language
            )
            response["duration"] = response_json["metadata"]["duration"]

            # Transform words to match OpenAI format
            if "words" in first_alternative:
                response["words"] = [
                    {"word": word["word"], "start": word["start"], "end": word["end"]}
                    for word in first_alternative["words"]
                ]

            # Store full response in hidden params
            response._hidden_params = response_json

            return response

        except Exception as e:
            raise ValueError(
                f"Error transforming Deepgram response: {str(e)}\nResponse: {raw_response.text}"
            )

    def get_complete_url(
        self,
        api_base: Optional[str],
        api_key: Optional[str],
        model: str,
        optional_params: dict,
        litellm_params: dict,
        stream: Optional[bool] = None,
    ) -> str:
        if api_base is None:
            api_base = (
                get_secret_str("DEEPGRAM_API_BASE") or "https://api.deepgram.com/v1"
            )
        api_base = api_base.rstrip("/")  # Remove trailing slash if present

        # Build query parameters including the model
        all_query_params = {"model": model}

        # Add filtered optional parameters
        additional_params = self._build_query_params(optional_params, model)
        all_query_params.update(additional_params)

        # Construct URL with proper query string encoding
        base_url = f"{api_base}/listen"
        query_string = urlencode(all_query_params)
        url = f"{base_url}?{query_string}"

        return url

    def _should_exclude_param(
        self,
        param_name: str,
        model: str,
    ) -> bool:
        """
        Determines if a parameter should be excluded from the query string.

        Args:
            param_name: Parameter name
            model: Model name

        Returns:
            True if the parameter should be excluded
        """
        # Parameters that are handled elsewhere or not relevant to Deepgram API
        excluded_params = {
            "model",  # Already in the URL path
            "OPENAI_TRANSCRIPTION_PARAMS",  # Internal litellm parameter
        }

        # Skip if it's an excluded parameter
        if param_name in excluded_params:
            return True

        # Skip if it's an OpenAI-specific parameter that we handle separately
        if param_name in self.get_supported_openai_params(model):
            return True

        return False

    def _format_param_value(self, value) -> str:
        """
        Formats a parameter value for use in query string.

        Args:
            value: The parameter value to format

        Returns:
            Formatted string value
        """
        if isinstance(value, bool):
            return str(value).lower()
        return str(value)

    def _build_query_params(self, optional_params: dict, model: str) -> dict:
        """
        Builds a dictionary of query parameters from optional_params.

        Args:
            optional_params: Dictionary of optional parameters
            model: Model name

        Returns:
            Dictionary of filtered and formatted query parameters
        """
        query_params = {}

        for key, value in optional_params.items():
            # Skip None values
            if value is None:
                continue

            # Skip excluded parameters
            if self._should_exclude_param(
                param_name=key,
                model=model,
            ):
                continue

            # Format and add the parameter
            formatted_value = self._format_param_value(value)
            query_params[key] = formatted_value

        return query_params

    def validate_environment(
        self,
        headers: dict,
        model: str,
        messages: List[AllMessageValues],
        optional_params: dict,
        litellm_params: dict,
        api_key: Optional[str] = None,
        api_base: Optional[str] = None,
    ) -> dict:
        api_key = api_key or get_secret_str("DEEPGRAM_API_KEY")
        return {
            "Authorization": f"Token {api_key}",
        }