Spaces:
Configuration error
Configuration error
File size: 39,373 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
"""
This file contains the transformation logic for the Gemini realtime API.
"""
import json
import os
import uuid
from typing import Any, Dict, List, Optional, Union, cast
from litellm import verbose_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.base_llm.realtime.transformation import BaseRealtimeConfig
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexGeminiConfig,
)
from litellm.responses.litellm_completion_transformation.transformation import (
LiteLLMCompletionResponsesConfig,
)
from litellm.types.llms.gemini import (
AutomaticActivityDetection,
BidiGenerateContentRealtimeInput,
BidiGenerateContentRealtimeInputConfig,
BidiGenerateContentServerContent,
BidiGenerateContentServerMessage,
BidiGenerateContentSetup,
)
from litellm.types.llms.openai import (
OpenAIRealtimeContentPartDone,
OpenAIRealtimeConversationItemCreated,
OpenAIRealtimeDoneEvent,
OpenAIRealtimeEvents,
OpenAIRealtimeEventTypes,
OpenAIRealtimeOutputItemDone,
OpenAIRealtimeResponseAudioDone,
OpenAIRealtimeResponseContentPartAdded,
OpenAIRealtimeResponseDelta,
OpenAIRealtimeResponseDoneObject,
OpenAIRealtimeResponseTextDone,
OpenAIRealtimeStreamResponseBaseObject,
OpenAIRealtimeStreamResponseOutputItemAdded,
OpenAIRealtimeStreamSession,
OpenAIRealtimeStreamSessionEvents,
OpenAIRealtimeTurnDetection,
)
from litellm.types.llms.vertex_ai import (
GeminiResponseModalities,
HttpxBlobType,
HttpxContentType,
)
from litellm.types.realtime import (
ALL_DELTA_TYPES,
RealtimeModalityResponseTransformOutput,
RealtimeResponseTransformInput,
RealtimeResponseTypedDict,
)
from litellm.utils import get_empty_usage
from ..common_utils import encode_unserializable_types
MAP_GEMINI_FIELD_TO_OPENAI_EVENT: Dict[str, OpenAIRealtimeEventTypes] = {
"setupComplete": OpenAIRealtimeEventTypes.SESSION_CREATED,
"serverContent.generationComplete": OpenAIRealtimeEventTypes.RESPONSE_TEXT_DONE,
"serverContent.turnComplete": OpenAIRealtimeEventTypes.RESPONSE_DONE,
"serverContent.interrupted": OpenAIRealtimeEventTypes.RESPONSE_DONE,
}
class GeminiRealtimeConfig(BaseRealtimeConfig):
def validate_environment(
self, headers: dict, model: str, api_key: Optional[str] = None
) -> dict:
return headers
def get_complete_url(
self, api_base: Optional[str], model: str, api_key: Optional[str] = None
) -> str:
"""
Example output:
"BACKEND_WS_URL = "wss://generativelanguage.googleapis.com/ws/google.ai.generativelanguage.v1beta.GenerativeService.BidiGenerateContent"";
"""
if api_base is None:
api_base = "wss://generativelanguage.googleapis.com"
if api_key is None:
api_key = os.environ.get("GEMINI_API_KEY")
if api_key is None:
raise ValueError("api_key is required for Gemini API calls")
api_base = api_base.replace("https://", "wss://")
api_base = api_base.replace("http://", "ws://")
return f"{api_base}/ws/google.ai.generativelanguage.v1beta.GenerativeService.BidiGenerateContent?key={api_key}"
def map_model_turn_event(
self, model_turn: HttpxContentType
) -> OpenAIRealtimeEventTypes:
"""
Map the model turn event to the OpenAI realtime events.
Returns either:
- response.text.delta - model_turn: {"parts": [{"text": "..."}]}
- response.audio.delta - model_turn: {"parts": [{"inlineData": {"mimeType": "audio/pcm", "data": "..."}}]}
Assumes parts is a single element list.
"""
if "parts" in model_turn:
parts = model_turn["parts"]
if len(parts) != 1:
verbose_logger.warning(
f"Realtime: Expected 1 part, got {len(parts)} for Gemini model turn event."
)
part = parts[0]
if "text" in part:
return OpenAIRealtimeEventTypes.RESPONSE_TEXT_DELTA
elif "inlineData" in part:
return OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DELTA
else:
raise ValueError(f"Unexpected part type: {part}")
raise ValueError(f"Unexpected model turn event, no 'parts' key: {model_turn}")
def map_generation_complete_event(
self, delta_type: Optional[ALL_DELTA_TYPES]
) -> OpenAIRealtimeEventTypes:
if delta_type == "text":
return OpenAIRealtimeEventTypes.RESPONSE_TEXT_DONE
elif delta_type == "audio":
return OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DONE
else:
raise ValueError(f"Unexpected delta type: {delta_type}")
def get_audio_mime_type(self, input_audio_format: str = "pcm16"):
mime_types = {
"pcm16": "audio/pcm",
"g711_ulaw": "audio/pcmu",
"g711_alaw": "audio/pcma",
}
return mime_types.get(input_audio_format, "application/octet-stream")
def map_automatic_turn_detection(
self, value: OpenAIRealtimeTurnDetection
) -> AutomaticActivityDetection:
automatic_activity_dection = AutomaticActivityDetection()
if "create_response" in value and isinstance(value["create_response"], bool):
automatic_activity_dection["disabled"] = not value["create_response"]
else:
automatic_activity_dection["disabled"] = True
if "prefix_padding_ms" in value and isinstance(value["prefix_padding_ms"], int):
automatic_activity_dection["prefixPaddingMs"] = value["prefix_padding_ms"]
if "silence_duration_ms" in value and isinstance(
value["silence_duration_ms"], int
):
automatic_activity_dection["silenceDurationMs"] = value[
"silence_duration_ms"
]
return automatic_activity_dection
def get_supported_openai_params(self, model: str) -> List[str]:
return [
"instructions",
"temperature",
"max_response_output_tokens",
"modalities",
"tools",
"input_audio_transcription",
"turn_detection",
]
def map_openai_params(
self, optional_params: dict, non_default_params: dict
) -> dict:
if "generationConfig" not in optional_params:
optional_params["generationConfig"] = {}
for key, value in non_default_params.items():
if key == "instructions":
optional_params["systemInstruction"] = HttpxContentType(
role="user", parts=[{"text": value}]
)
elif key == "temperature":
optional_params["generationConfig"]["temperature"] = value
elif key == "max_response_output_tokens":
optional_params["generationConfig"]["maxOutputTokens"] = value
elif key == "modalities":
optional_params["generationConfig"]["responseModalities"] = [
modality.upper() for modality in cast(List[str], value)
]
elif key == "tools":
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexGeminiConfig,
)
vertex_gemini_config = VertexGeminiConfig()
vertex_gemini_config._map_function(value)
optional_params["generationConfig"][
"tools"
] = vertex_gemini_config._map_function(value)
elif key == "input_audio_transcription" and value is not None:
optional_params["inputAudioTranscription"] = {}
elif key == "turn_detection":
value_typed = cast(OpenAIRealtimeTurnDetection, value)
transformed_audio_activity_config = self.map_automatic_turn_detection(
value_typed
)
if (
len(transformed_audio_activity_config) > 0
): # if the config is not empty, add it to the optional params
optional_params[
"realtimeInputConfig"
] = BidiGenerateContentRealtimeInputConfig(
automaticActivityDetection=transformed_audio_activity_config
)
if len(optional_params["generationConfig"]) == 0:
optional_params.pop("generationConfig")
return optional_params
def transform_realtime_request(
self,
message: str,
model: str,
session_configuration_request: Optional[str] = None,
) -> List[str]:
realtime_input_dict: BidiGenerateContentRealtimeInput = {}
try:
json_message = json.loads(message)
except json.JSONDecodeError:
if isinstance(message, bytes):
message_str = message.decode("utf-8", errors="replace")
else:
message_str = str(message)
raise ValueError(f"Invalid JSON message: {message_str}")
## HANDLE SESSION UPDATE ##
messages: List[str] = []
if "type" in json_message and json_message["type"] == "session.update":
client_session_configuration_request = self.map_openai_params(
optional_params={}, non_default_params=json_message["session"]
)
client_session_configuration_request["model"] = f"models/{model}"
messages.append(
json.dumps(
{
"setup": client_session_configuration_request,
}
)
)
# elif session_configuration_request is None:
# default_session_configuration_request = self.session_configuration_request(model)
# messages.append(default_session_configuration_request)
## HANDLE INPUT AUDIO BUFFER ##
if (
"type" in json_message
and json_message["type"] == "input_audio_buffer.append"
):
realtime_input_dict["audio"] = HttpxBlobType(
mimeType=self.get_audio_mime_type(), data=json_message["audio"]
)
else:
realtime_input_dict["text"] = message
if len(realtime_input_dict) != 1:
raise ValueError(
f"Only one argument can be set, got {len(realtime_input_dict)}:"
f" {list(realtime_input_dict.keys())}"
)
realtime_input_dict = cast(
BidiGenerateContentRealtimeInput,
encode_unserializable_types(cast(Dict[str, object], realtime_input_dict)),
)
messages.append(json.dumps({"realtime_input": realtime_input_dict}))
return messages
def transform_session_created_event(
self,
model: str,
logging_session_id: str,
session_configuration_request: Optional[str] = None,
) -> OpenAIRealtimeStreamSessionEvents:
if session_configuration_request:
session_configuration_request_dict: BidiGenerateContentSetup = json.loads(
session_configuration_request
).get("setup", {})
else:
session_configuration_request_dict = {}
_model = session_configuration_request_dict.get("model") or model
generation_config = (
session_configuration_request_dict.get("generationConfig", {}) or {}
)
gemini_modalities = generation_config.get("responseModalities", ["TEXT"])
_modalities = [
modality.lower() for modality in cast(List[str], gemini_modalities)
]
_system_instruction = session_configuration_request_dict.get(
"systemInstruction"
)
session = OpenAIRealtimeStreamSession(
id=logging_session_id,
modalities=_modalities,
)
if _system_instruction is not None and isinstance(_system_instruction, str):
session["instructions"] = _system_instruction
if _model is not None and isinstance(_model, str):
session["model"] = _model.strip(
"models/"
) # keep it consistent with how openai returns the model name
return OpenAIRealtimeStreamSessionEvents(
type="session.created",
session=session,
event_id=str(uuid.uuid4()),
)
def _is_new_content_delta(
self,
previous_messages: Optional[List[OpenAIRealtimeEvents]] = None,
) -> bool:
if previous_messages is None or len(previous_messages) == 0:
return True
if "type" in previous_messages[-1] and previous_messages[-1]["type"].endswith(
"delta"
):
return False
return True
def return_new_content_delta_events(
self,
response_id: str,
output_item_id: str,
conversation_id: str,
delta_type: ALL_DELTA_TYPES,
session_configuration_request: Optional[str] = None,
) -> List[OpenAIRealtimeEvents]:
if session_configuration_request is None:
raise ValueError(
"session_configuration_request is required for Gemini API calls"
)
session_configuration_request_dict: BidiGenerateContentSetup = json.loads(
session_configuration_request
).get("setup", {})
generation_config = session_configuration_request_dict.get(
"generationConfig", {}
)
gemini_modalities = generation_config.get("responseModalities", ["TEXT"])
_modalities = [
modality.lower() for modality in cast(List[str], gemini_modalities)
]
_temperature = generation_config.get("temperature")
_max_output_tokens = generation_config.get("maxOutputTokens")
response_items: List[OpenAIRealtimeEvents] = []
## - return response.created
response_created = OpenAIRealtimeStreamResponseBaseObject(
type="response.created",
event_id="event_{}".format(uuid.uuid4()),
response={
"object": "realtime.response",
"id": response_id,
"status": "in_progress",
"output": [],
"conversation_id": conversation_id,
"modalities": _modalities,
"temperature": _temperature,
"max_output_tokens": _max_output_tokens,
},
)
response_items.append(response_created)
## - return response.output_item.added ← adds ‘item_id’ same for all subsequent events
response_output_item_added = OpenAIRealtimeStreamResponseOutputItemAdded(
type="response.output_item.added",
response_id=response_id,
output_index=0,
item={
"id": output_item_id,
"object": "realtime.item",
"type": "message",
"status": "in_progress",
"role": "assistant",
"content": [],
},
)
response_items.append(response_output_item_added)
## - return conversation.item.created
conversation_item_created = OpenAIRealtimeConversationItemCreated(
type="conversation.item.created",
event_id="event_{}".format(uuid.uuid4()),
item={
"id": output_item_id,
"object": "realtime.item",
"type": "message",
"status": "in_progress",
"role": "assistant",
"content": [],
},
)
response_items.append(conversation_item_created)
## - return response.content_part.added
response_content_part_added = OpenAIRealtimeResponseContentPartAdded(
type="response.content_part.added",
content_index=0,
output_index=0,
event_id="event_{}".format(uuid.uuid4()),
item_id=output_item_id,
part={
"type": "text",
"text": "",
}
if delta_type == "text"
else {
"type": "audio",
"transcript": "",
},
response_id=response_id,
)
response_items.append(response_content_part_added)
return response_items
def transform_content_delta_events(
self,
message: BidiGenerateContentServerContent,
output_item_id: str,
response_id: str,
delta_type: ALL_DELTA_TYPES,
) -> OpenAIRealtimeResponseDelta:
delta = ""
try:
if "modelTurn" in message and "parts" in message["modelTurn"]:
for part in message["modelTurn"]["parts"]:
if "text" in part:
delta += part["text"]
elif "inlineData" in part:
delta += part["inlineData"]["data"]
except Exception as e:
raise ValueError(
f"Error transforming content delta events: {e}, got message: {message}"
)
return OpenAIRealtimeResponseDelta(
type="response.text.delta"
if delta_type == "text"
else "response.audio.delta",
content_index=0,
event_id="event_{}".format(uuid.uuid4()),
item_id=output_item_id,
output_index=0,
response_id=response_id,
delta=delta,
)
def transform_content_done_event(
self,
delta_chunks: Optional[List[OpenAIRealtimeResponseDelta]],
current_output_item_id: Optional[str],
current_response_id: Optional[str],
delta_type: ALL_DELTA_TYPES,
) -> Union[OpenAIRealtimeResponseTextDone, OpenAIRealtimeResponseAudioDone]:
if delta_chunks:
delta = "".join([delta_chunk["delta"] for delta_chunk in delta_chunks])
else:
delta = ""
if current_output_item_id is None or current_response_id is None:
raise ValueError(
"current_output_item_id and current_response_id cannot be None for a 'done' event."
)
if delta_type == "text":
return OpenAIRealtimeResponseTextDone(
type="response.text.done",
content_index=0,
event_id="event_{}".format(uuid.uuid4()),
item_id=current_output_item_id,
output_index=0,
response_id=current_response_id,
text=delta,
)
elif delta_type == "audio":
return OpenAIRealtimeResponseAudioDone(
type="response.audio.done",
content_index=0,
event_id="event_{}".format(uuid.uuid4()),
item_id=current_output_item_id,
output_index=0,
response_id=current_response_id,
)
def return_additional_content_done_events(
self,
current_output_item_id: Optional[str],
current_response_id: Optional[str],
delta_done_event: Union[
OpenAIRealtimeResponseTextDone, OpenAIRealtimeResponseAudioDone
],
delta_type: ALL_DELTA_TYPES,
) -> List[OpenAIRealtimeEvents]:
"""
- return response.content_part.done
- return response.output_item.done
"""
if current_output_item_id is None or current_response_id is None:
raise ValueError(
"current_output_item_id and current_response_id cannot be None for a 'done' event."
)
returned_items: List[OpenAIRealtimeEvents] = []
delta_done_event_text = cast(Optional[str], delta_done_event.get("text"))
# response.content_part.done
response_content_part_done = OpenAIRealtimeContentPartDone(
type="response.content_part.done",
content_index=0,
event_id="event_{}".format(uuid.uuid4()),
item_id=current_output_item_id,
output_index=0,
part={"type": "text", "text": delta_done_event_text}
if delta_done_event_text and delta_type == "text"
else {
"type": "audio",
"transcript": "", # gemini doesn't return transcript for audio
},
response_id=current_response_id,
)
returned_items.append(response_content_part_done)
# response.output_item.done
response_output_item_done = OpenAIRealtimeOutputItemDone(
type="response.output_item.done",
event_id="event_{}".format(uuid.uuid4()),
output_index=0,
response_id=current_response_id,
item={
"id": current_output_item_id,
"object": "realtime.item",
"type": "message",
"status": "completed",
"role": "assistant",
"content": [
{"type": "text", "text": delta_done_event_text}
if delta_done_event_text and delta_type == "text"
else {
"type": "audio",
"transcript": "",
}
],
},
)
returned_items.append(response_output_item_done)
return returned_items
@staticmethod
def get_nested_value(obj: dict, path: str) -> Any:
keys = path.split(".")
current = obj
for key in keys:
if isinstance(current, dict) and key in current:
current = current[key]
else:
return None
return current
def update_current_delta_chunks(
self,
transformed_message: Union[OpenAIRealtimeEvents, List[OpenAIRealtimeEvents]],
current_delta_chunks: Optional[List[OpenAIRealtimeResponseDelta]],
) -> Optional[List[OpenAIRealtimeResponseDelta]]:
try:
if isinstance(transformed_message, list):
current_delta_chunks = []
any_delta_chunk = False
for event in transformed_message:
if event["type"] == "response.text.delta":
current_delta_chunks.append(
cast(OpenAIRealtimeResponseDelta, event)
)
any_delta_chunk = True
if not any_delta_chunk:
current_delta_chunks = (
None # reset current_delta_chunks if no delta chunks
)
else:
if (
transformed_message["type"] == "response.text.delta"
): # ONLY ACCUMULATE TEXT DELTA CHUNKS - AUDIO WILL CAUSE SERVER MEMORY ISSUES
if current_delta_chunks is None:
current_delta_chunks = []
current_delta_chunks.append(
cast(OpenAIRealtimeResponseDelta, transformed_message)
)
else:
current_delta_chunks = None
return current_delta_chunks
except Exception as e:
raise ValueError(
f"Error updating current delta chunks: {e}, got transformed_message: {transformed_message}"
)
def update_current_item_chunks(
self,
transformed_message: Union[OpenAIRealtimeEvents, List[OpenAIRealtimeEvents]],
current_item_chunks: Optional[List[OpenAIRealtimeOutputItemDone]],
) -> Optional[List[OpenAIRealtimeOutputItemDone]]:
try:
if isinstance(transformed_message, list):
current_item_chunks = []
any_item_chunk = False
for event in transformed_message:
if event["type"] == "response.output_item.done":
current_item_chunks.append(
cast(OpenAIRealtimeOutputItemDone, event)
)
any_item_chunk = True
if not any_item_chunk:
current_item_chunks = (
None # reset current_item_chunks if no item chunks
)
else:
if transformed_message["type"] == "response.output_item.done":
if current_item_chunks is None:
current_item_chunks = []
current_item_chunks.append(
cast(OpenAIRealtimeOutputItemDone, transformed_message)
)
else:
current_item_chunks = None
return current_item_chunks
except Exception as e:
raise ValueError(
f"Error updating current item chunks: {e}, got transformed_message: {transformed_message}"
)
def transform_response_done_event(
self,
message: BidiGenerateContentServerMessage,
current_response_id: Optional[str],
current_conversation_id: Optional[str],
output_items: Optional[List[OpenAIRealtimeOutputItemDone]],
session_configuration_request: Optional[str] = None,
) -> OpenAIRealtimeDoneEvent:
if current_conversation_id is None or current_response_id is None:
raise ValueError(
f"current_conversation_id and current_response_id must all be set for a 'done' event. Got=current_conversation_id: {current_conversation_id}, current_response_id: {current_response_id}"
)
if session_configuration_request:
session_configuration_request_dict: BidiGenerateContentSetup = json.loads(
session_configuration_request
).get("setup", {})
else:
session_configuration_request_dict = {}
generation_config = session_configuration_request_dict.get(
"generationConfig", {}
)
temperature = generation_config.get("temperature")
max_output_tokens = generation_config.get("max_output_tokens")
gemini_modalities = generation_config.get("responseModalities", ["TEXT"])
_modalities = [
modality.lower() for modality in cast(List[str], gemini_modalities)
]
if "usageMetadata" in message:
_chat_completion_usage = VertexGeminiConfig._calculate_usage(
completion_response=message,
)
else:
_chat_completion_usage = get_empty_usage()
responses_api_usage = LiteLLMCompletionResponsesConfig._transform_chat_completion_usage_to_responses_usage(
_chat_completion_usage,
)
response_done_event = OpenAIRealtimeDoneEvent(
type="response.done",
event_id="event_{}".format(uuid.uuid4()),
response=OpenAIRealtimeResponseDoneObject(
object="realtime.response",
id=current_response_id,
status="completed",
output=[output_item["item"] for output_item in output_items]
if output_items
else [],
conversation_id=current_conversation_id,
modalities=_modalities,
usage=responses_api_usage.model_dump(),
),
)
if temperature is not None:
response_done_event["response"]["temperature"] = temperature
if max_output_tokens is not None:
response_done_event["response"]["max_output_tokens"] = max_output_tokens
return response_done_event
def handle_openai_modality_event(
self,
openai_event: OpenAIRealtimeEventTypes,
json_message: dict,
realtime_response_transform_input: RealtimeResponseTransformInput,
delta_type: ALL_DELTA_TYPES,
) -> RealtimeModalityResponseTransformOutput:
current_output_item_id = realtime_response_transform_input[
"current_output_item_id"
]
current_response_id = realtime_response_transform_input["current_response_id"]
current_conversation_id = realtime_response_transform_input[
"current_conversation_id"
]
current_delta_chunks = realtime_response_transform_input["current_delta_chunks"]
session_configuration_request = realtime_response_transform_input[
"session_configuration_request"
]
returned_message: List[OpenAIRealtimeEvents] = []
if (
openai_event == OpenAIRealtimeEventTypes.RESPONSE_TEXT_DELTA
or openai_event == OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DELTA
):
current_response_id = current_response_id or "resp_{}".format(uuid.uuid4())
if not current_output_item_id:
# send the list of standard 'new' content.delta events
current_output_item_id = "item_{}".format(uuid.uuid4())
current_conversation_id = current_conversation_id or "conv_{}".format(
uuid.uuid4()
)
returned_message = self.return_new_content_delta_events(
session_configuration_request=session_configuration_request,
response_id=current_response_id,
output_item_id=current_output_item_id,
conversation_id=current_conversation_id,
delta_type=delta_type,
)
# send the list of standard 'new' content.delta events
transformed_message = self.transform_content_delta_events(
BidiGenerateContentServerContent(**json_message["serverContent"]),
current_output_item_id,
current_response_id,
delta_type=delta_type,
)
returned_message.append(transformed_message)
elif (
openai_event == OpenAIRealtimeEventTypes.RESPONSE_TEXT_DONE
or openai_event == OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DONE
):
transformed_content_done_event = self.transform_content_done_event(
current_output_item_id=current_output_item_id,
current_response_id=current_response_id,
delta_chunks=current_delta_chunks,
delta_type=delta_type,
)
returned_message = [transformed_content_done_event]
additional_items = self.return_additional_content_done_events(
current_output_item_id=current_output_item_id,
current_response_id=current_response_id,
delta_done_event=transformed_content_done_event,
delta_type=delta_type,
)
returned_message.extend(additional_items)
return {
"returned_message": returned_message,
"current_output_item_id": current_output_item_id,
"current_response_id": current_response_id,
"current_conversation_id": current_conversation_id,
"current_delta_chunks": current_delta_chunks,
"current_delta_type": delta_type,
}
def map_openai_event(
self,
key: str,
value: dict,
current_delta_type: Optional[ALL_DELTA_TYPES],
json_message: dict,
) -> OpenAIRealtimeEventTypes:
model_turn_event = value.get("modelTurn")
generation_complete_event = value.get("generationComplete")
openai_event: Optional[OpenAIRealtimeEventTypes] = None
if model_turn_event: # check if model turn event
openai_event = self.map_model_turn_event(model_turn_event)
elif generation_complete_event:
openai_event = self.map_generation_complete_event(
delta_type=current_delta_type
)
else:
# Check if this key or any nested key matches our mapping
for map_key, openai_event in MAP_GEMINI_FIELD_TO_OPENAI_EVENT.items():
if map_key == key or (
"." in map_key
and GeminiRealtimeConfig.get_nested_value(json_message, map_key)
is not None
):
openai_event = openai_event
break
if openai_event is None:
raise ValueError(f"Unknown openai event: {key}, value: {value}")
return openai_event
def transform_realtime_response(
self,
message: Union[str, bytes],
model: str,
logging_obj: LiteLLMLoggingObj,
realtime_response_transform_input: RealtimeResponseTransformInput,
) -> RealtimeResponseTypedDict:
"""
Keep this state less - leave the state management (e.g. tracking current_output_item_id, current_response_id, current_conversation_id, current_delta_chunks) to the caller.
"""
try:
json_message = json.loads(message)
except json.JSONDecodeError:
if isinstance(message, bytes):
message_str = message.decode("utf-8", errors="replace")
else:
message_str = str(message)
raise ValueError(f"Invalid JSON message: {message_str}")
logging_session_id = logging_obj.litellm_trace_id
current_output_item_id = realtime_response_transform_input[
"current_output_item_id"
]
current_response_id = realtime_response_transform_input["current_response_id"]
current_conversation_id = realtime_response_transform_input[
"current_conversation_id"
]
current_delta_chunks = realtime_response_transform_input["current_delta_chunks"]
session_configuration_request = realtime_response_transform_input[
"session_configuration_request"
]
current_item_chunks = realtime_response_transform_input["current_item_chunks"]
current_delta_type: Optional[
ALL_DELTA_TYPES
] = realtime_response_transform_input["current_delta_type"]
returned_message: List[OpenAIRealtimeEvents] = []
for key, value in json_message.items():
# Check if this key or any nested key matches our mapping
openai_event = self.map_openai_event(
key=key,
value=value,
current_delta_type=current_delta_type,
json_message=json_message,
)
if openai_event == OpenAIRealtimeEventTypes.SESSION_CREATED:
transformed_message = self.transform_session_created_event(
model,
logging_session_id,
realtime_response_transform_input["session_configuration_request"],
)
session_configuration_request = json.dumps(transformed_message)
returned_message.append(transformed_message)
elif openai_event == OpenAIRealtimeEventTypes.RESPONSE_DONE:
transformed_response_done_event = self.transform_response_done_event(
message=BidiGenerateContentServerMessage(**json_message), # type: ignore
current_response_id=current_response_id,
current_conversation_id=current_conversation_id,
session_configuration_request=session_configuration_request,
output_items=None,
)
returned_message.append(transformed_response_done_event)
elif (
openai_event == OpenAIRealtimeEventTypes.RESPONSE_TEXT_DELTA
or openai_event == OpenAIRealtimeEventTypes.RESPONSE_TEXT_DONE
or openai_event == OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DELTA
or openai_event == OpenAIRealtimeEventTypes.RESPONSE_AUDIO_DONE
):
_returned_message = self.handle_openai_modality_event(
openai_event,
json_message,
realtime_response_transform_input,
delta_type="text" if "text" in openai_event.value else "audio",
)
returned_message.extend(_returned_message["returned_message"])
current_output_item_id = _returned_message["current_output_item_id"]
current_response_id = _returned_message["current_response_id"]
current_conversation_id = _returned_message["current_conversation_id"]
current_delta_chunks = _returned_message["current_delta_chunks"]
current_delta_type = _returned_message["current_delta_type"]
else:
raise ValueError(f"Unknown openai event: {openai_event}")
if len(returned_message) == 0:
if isinstance(message, bytes):
message_str = message.decode("utf-8", errors="replace")
else:
message_str = str(message)
raise ValueError(f"Unknown message type: {message_str}")
current_delta_chunks = self.update_current_delta_chunks(
transformed_message=returned_message,
current_delta_chunks=current_delta_chunks,
)
current_item_chunks = self.update_current_item_chunks(
transformed_message=returned_message,
current_item_chunks=current_item_chunks,
)
return {
"response": returned_message,
"current_output_item_id": current_output_item_id,
"current_response_id": current_response_id,
"current_delta_chunks": current_delta_chunks,
"current_conversation_id": current_conversation_id,
"current_item_chunks": current_item_chunks,
"current_delta_type": current_delta_type,
"session_configuration_request": session_configuration_request,
}
def requires_session_configuration(self) -> bool:
return True
def session_configuration_request(self, model: str) -> str:
"""
```
{
"model": string,
"generationConfig": {
"candidateCount": integer,
"maxOutputTokens": integer,
"temperature": number,
"topP": number,
"topK": integer,
"presencePenalty": number,
"frequencyPenalty": number,
"responseModalities": [string],
"speechConfig": object,
"mediaResolution": object
},
"systemInstruction": string,
"tools": [object]
}
```
"""
response_modalities: List[GeminiResponseModalities] = ["AUDIO"]
output_audio_transcription = False
# if "audio" in model: ## UNCOMMENT THIS WHEN AUDIO IS SUPPORTED
# output_audio_transcription = True
setup_config: BidiGenerateContentSetup = {
"model": f"models/{model}",
"generationConfig": {"responseModalities": response_modalities},
}
if output_audio_transcription:
setup_config["outputAudioTranscription"] = {}
return json.dumps(
{
"setup": setup_config,
}
)
|