Spaces:
Configuration error
Configuration error
File size: 10,815 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import uuid
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypedDict, Union
import httpx
import litellm
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.rerank import (
OptionalRerankParams,
RerankBilledUnits,
RerankResponse,
RerankResponseDocument,
RerankResponseMeta,
RerankResponseResult,
RerankTokens,
)
from litellm.utils import token_counter
from ..common_utils import HuggingFaceError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
LoggingClass = LiteLLMLoggingObj
else:
LoggingClass = Any
class HuggingFaceRerankResponseItem(TypedDict):
"""Type definition for HuggingFace rerank API response items."""
index: int
score: float
text: Optional[str] # Optional, included when return_text=True
class HuggingFaceRerankResponse(TypedDict):
"""Type definition for HuggingFace rerank API complete response."""
# The response is a list of HuggingFaceRerankResponseItem
pass
# Type alias for the actual response structure
HuggingFaceRerankResponseList = List[HuggingFaceRerankResponseItem]
class HuggingFaceRerankConfig(BaseRerankConfig):
def get_api_base(self, model: str, api_base: Optional[str]) -> str:
if api_base is not None:
return api_base
elif os.getenv("HF_API_BASE") is not None:
return os.getenv("HF_API_BASE", "")
elif os.getenv("HUGGINGFACE_API_BASE") is not None:
return os.getenv("HUGGINGFACE_API_BASE", "")
else:
return "https://api-inference.huggingface.co"
def get_complete_url(self, api_base: Optional[str], model: str) -> str:
"""
Get the complete URL for the API call, including the /rerank suffix if necessary.
"""
# Get base URL from api_base or default
base_url = self.get_api_base(model=model, api_base=api_base)
# Remove trailing slashes and ensure we have the /rerank endpoint
base_url = base_url.rstrip("/")
if not base_url.endswith("/rerank"):
base_url = f"{base_url}/rerank"
return base_url
def get_supported_cohere_rerank_params(self, model: str) -> list:
return [
"query",
"documents",
"top_n",
"return_documents",
]
def map_cohere_rerank_params(
self,
non_default_params: Optional[dict],
model: str,
drop_params: bool,
query: str,
documents: List[Union[str, Dict[str, Any]]],
custom_llm_provider: Optional[str] = None,
top_n: Optional[int] = None,
rank_fields: Optional[List[str]] = None,
return_documents: Optional[bool] = True,
max_chunks_per_doc: Optional[int] = None,
max_tokens_per_doc: Optional[int] = None,
) -> OptionalRerankParams:
optional_rerank_params = {}
if non_default_params is not None:
for k, v in non_default_params.items():
if k == "documents" and v is not None:
optional_rerank_params["texts"] = v
elif k == "return_documents" and v is not None and isinstance(v, bool):
optional_rerank_params["return_text"] = v
elif k == "top_n" and v is not None:
optional_rerank_params["top_n"] = v
elif k == "documents" and v is not None:
optional_rerank_params["texts"] = v
elif k == "query" and v is not None:
optional_rerank_params["query"] = v
return OptionalRerankParams(**optional_rerank_params) # type: ignore
def validate_environment(
self,
headers: dict,
model: str,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
# Get API credentials
api_key, api_base = self.get_api_credentials(api_key=api_key, api_base=api_base)
default_headers = {
"accept": "application/json",
"content-type": "application/json",
}
if api_key:
default_headers["Authorization"] = f"Bearer {api_key}"
if "Authorization" in headers:
default_headers["Authorization"] = headers["Authorization"]
return {**default_headers, **headers}
def transform_rerank_request(
self,
model: str,
optional_rerank_params: Union[OptionalRerankParams, dict],
headers: dict,
) -> dict:
if "query" not in optional_rerank_params:
raise ValueError("query is required for HuggingFace rerank")
if "texts" not in optional_rerank_params:
raise ValueError(
"Cohere 'documents' param is required for HuggingFace rerank"
)
# Ensure return_text is a boolean value
# HuggingFace API expects return_text parameter, corresponding to our return_documents parameter
request_body = {
"raw_scores": False,
"truncate": False,
"truncation_direction": "Right",
}
request_body.update(optional_rerank_params)
return request_body
def transform_rerank_response(
self,
model: str,
raw_response: httpx.Response,
model_response: RerankResponse,
logging_obj: LoggingClass,
api_key: Optional[str] = None,
request_data: dict = {},
optional_params: dict = {},
litellm_params: dict = {},
) -> RerankResponse:
try:
raw_response_json: HuggingFaceRerankResponseList = raw_response.json()
except Exception:
raise HuggingFaceError(
message=getattr(raw_response, "text", str(raw_response)),
status_code=getattr(raw_response, "status_code", 500),
)
# Use standard litellm token counter for proper token estimation
input_text = request_data.get("query", "")
try:
# Calculate tokens for the raw response JSON string
response_text = str(raw_response_json)
estimated_output_tokens = token_counter(model=model, text=response_text)
# Calculate input tokens from query and documents
query = request_data.get("query", "")
documents = request_data.get("texts", [])
# Convert documents to string if they're not already
documents_text = ""
for doc in documents:
if isinstance(doc, str):
documents_text += doc + " "
elif isinstance(doc, dict) and "text" in doc:
documents_text += doc["text"] + " "
# Calculate input tokens using the same model
input_text = query + " " + documents_text
estimated_input_tokens = token_counter(model=model, text=input_text)
except Exception:
# Fallback to reasonable estimates if token counting fails
estimated_output_tokens = (
len(raw_response_json) * 10 if raw_response_json else 10
)
estimated_input_tokens = (
len(input_text) * 4 if "input_text" in locals() else 0
)
_billed_units = RerankBilledUnits(search_units=1)
_tokens = RerankTokens(
input_tokens=estimated_input_tokens, output_tokens=estimated_output_tokens
)
rerank_meta = RerankResponseMeta(
api_version={"version": "1.0"}, billed_units=_billed_units, tokens=_tokens
)
# Check if documents should be returned based on request parameters
should_return_documents = request_data.get(
"return_text", False
) or request_data.get("return_documents", False)
original_documents = request_data.get("texts", [])
results = []
for item in raw_response_json:
# Extract required fields with defaults to handle None values
index = item.get("index")
score = item.get("score")
# Skip items that don't have required fields
if index is None or score is None:
continue
# Create RerankResponseResult with required fields
result = RerankResponseResult(index=index, relevance_score=score)
# Add optional document field if needed
if should_return_documents:
text_content = item.get("text", "")
# 1. First try to use text returned directly from API if available
if text_content:
result["document"] = RerankResponseDocument(text=text_content)
# 2. If no text in API response but original documents are available, use those
elif original_documents and 0 <= item.get("index", -1) < len(
original_documents
):
doc = original_documents[item.get("index")]
if isinstance(doc, str):
result["document"] = RerankResponseDocument(text=doc)
elif isinstance(doc, dict) and "text" in doc:
result["document"] = RerankResponseDocument(text=doc["text"])
results.append(result)
return RerankResponse(
id=str(uuid.uuid4()),
results=results,
meta=rerank_meta,
)
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return HuggingFaceError(message=error_message, status_code=status_code)
def get_api_credentials(
self,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> Tuple[Optional[str], Optional[str]]:
"""
Get API key and base URL from multiple sources.
Returns tuple of (api_key, api_base).
Parameters:
api_key: API key provided directly to this function, takes precedence over all other sources
api_base: API base provided directly to this function, takes precedence over all other sources
"""
# Get API key from multiple sources
final_api_key = (
api_key or litellm.huggingface_key or get_secret_str("HUGGINGFACE_API_KEY")
)
# Get API base from multiple sources
final_api_base = (
api_base
or litellm.api_base
or get_secret_str("HF_API_BASE")
or get_secret_str("HUGGINGFACE_API_BASE")
)
return final_api_key, final_api_base
|