Spaces:
Configuration error
Configuration error
File size: 29,600 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
"""
This is a rate limiter implementation based on a similar one by Envoy proxy.
This is currently in development and not yet ready for production.
"""
import os
from datetime import datetime
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Literal,
Optional,
TypedDict,
Union,
cast,
)
from fastapi import HTTPException
from litellm import DualCache
from litellm._logging import verbose_proxy_logger
from litellm.integrations.custom_logger import CustomLogger
from litellm.proxy._types import UserAPIKeyAuth
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from litellm.proxy.utils import InternalUsageCache as _InternalUsageCache
from litellm.types.caching import RedisPipelineIncrementOperation
Span = Union[_Span, Any]
InternalUsageCache = _InternalUsageCache
else:
Span = Any
InternalUsageCache = Any
BATCH_RATE_LIMITER_SCRIPT = """
local results = {}
local now = tonumber(ARGV[1])
local window_size = tonumber(ARGV[2])
-- Process each window/counter pair
for i = 1, #KEYS, 2 do
local window_key = KEYS[i]
local counter_key = KEYS[i + 1]
local increment_value = 1
-- Check if window exists and is valid
local window_start = redis.call('GET', window_key)
if not window_start or (now - tonumber(window_start)) >= window_size then
-- Reset window and counter
redis.call('SET', window_key, tostring(now))
redis.call('SET', counter_key, increment_value)
redis.call('EXPIRE', window_key, window_size)
redis.call('EXPIRE', counter_key, window_size)
table.insert(results, tostring(now)) -- window_start
table.insert(results, increment_value) -- counter
else
local counter = redis.call('INCR', counter_key)
table.insert(results, window_start) -- window_start
table.insert(results, counter) -- counter
end
end
return results
"""
class RateLimitDescriptorRateLimitObject(TypedDict, total=False):
requests_per_unit: Optional[int]
tokens_per_unit: Optional[int]
max_parallel_requests: Optional[int]
window_size: Optional[int]
class RateLimitDescriptor(TypedDict):
key: str
value: str
rate_limit: Optional[RateLimitDescriptorRateLimitObject]
class RateLimitStatus(TypedDict):
code: str
current_limit: int
limit_remaining: int
rate_limit_type: Literal["requests", "tokens", "max_parallel_requests"]
descriptor_key: str
class RateLimitResponse(TypedDict):
overall_code: str
statuses: List[RateLimitStatus]
class RateLimitResponseWithDescriptors(TypedDict):
descriptors: List[RateLimitDescriptor]
response: RateLimitResponse
class _PROXY_MaxParallelRequestsHandler_v3(CustomLogger):
def __init__(self, internal_usage_cache: InternalUsageCache):
self.internal_usage_cache = internal_usage_cache
if self.internal_usage_cache.dual_cache.redis_cache is not None:
self.batch_rate_limiter_script = (
self.internal_usage_cache.dual_cache.redis_cache.async_register_script(
BATCH_RATE_LIMITER_SCRIPT
)
)
else:
self.batch_rate_limiter_script = None
self.window_size = int(os.getenv("LITELLM_RATE_LIMIT_WINDOW_SIZE", 60))
async def in_memory_cache_sliding_window(
self,
keys: List[str],
now_int: int,
window_size: int,
) -> List[Any]:
"""
Implement sliding window rate limiting logic using in-memory cache operations.
This follows the same logic as the Redis Lua script but uses async cache operations.
"""
results: List[Any] = []
# Process each window/counter pair
for i in range(0, len(keys), 2):
window_key = keys[i]
counter_key = keys[i + 1]
increment_value = 1
# Get the window start time
window_start = await self.internal_usage_cache.async_get_cache(
key=window_key,
litellm_parent_otel_span=None,
local_only=True,
)
# Check if window exists and is valid
if window_start is None or (now_int - int(window_start)) >= window_size:
# Reset window and counter
await self.internal_usage_cache.async_set_cache(
key=window_key,
value=str(now_int),
ttl=window_size,
litellm_parent_otel_span=None,
local_only=True,
)
await self.internal_usage_cache.async_set_cache(
key=counter_key,
value=increment_value,
ttl=window_size,
litellm_parent_otel_span=None,
local_only=True,
)
results.append(str(now_int)) # window_start
results.append(increment_value) # counter
else:
# Increment the counter
current_counter = await self.internal_usage_cache.async_get_cache(
key=counter_key,
litellm_parent_otel_span=None,
local_only=True,
)
new_counter_value = (
int(current_counter) if current_counter is not None else 0
) + increment_value
await self.internal_usage_cache.async_set_cache(
key=counter_key,
value=new_counter_value,
ttl=window_size,
litellm_parent_otel_span=None,
local_only=True,
)
results.append(window_start) # window_start
results.append(new_counter_value) # counter
return results
def create_rate_limit_keys(
self,
key: str,
value: str,
rate_limit_type: Literal["requests", "tokens", "max_parallel_requests"],
) -> str:
"""
Create the rate limit keys for the given key and value.
"""
counter_key = f"{{{key}:{value}}}:{rate_limit_type}"
return counter_key
def is_cache_list_over_limit(
self,
keys_to_fetch: List[str],
cache_values: List[Any],
key_metadata: Dict[str, Any],
) -> RateLimitResponse:
"""
Check if the cache values are over the limit.
"""
statuses: List[RateLimitStatus] = []
overall_code = "OK"
for i in range(0, len(cache_values), 2):
item_code = "OK"
window_key = keys_to_fetch[i]
counter_key = keys_to_fetch[i + 1]
counter_value = cache_values[i + 1]
requests_limit = key_metadata[window_key]["requests_limit"]
max_parallel_requests_limit = key_metadata[window_key][
"max_parallel_requests_limit"
]
tokens_limit = key_metadata[window_key]["tokens_limit"]
# Determine which limit to use for current_limit and limit_remaining
current_limit: Optional[int] = None
rate_limit_type: Optional[
Literal["requests", "tokens", "max_parallel_requests"]
] = None
if counter_key.endswith(":requests"):
current_limit = requests_limit
rate_limit_type = "requests"
elif counter_key.endswith(":max_parallel_requests"):
current_limit = max_parallel_requests_limit
rate_limit_type = "max_parallel_requests"
elif counter_key.endswith(":tokens"):
current_limit = tokens_limit
rate_limit_type = "tokens"
if current_limit is None or rate_limit_type is None:
continue
if counter_value is not None and int(counter_value) + 1 > current_limit:
overall_code = "OVER_LIMIT"
item_code = "OVER_LIMIT"
# Only compute limit_remaining if current_limit is not None
limit_remaining = (
current_limit - int(counter_value)
if counter_value is not None
else current_limit
)
statuses.append(
{
"code": item_code,
"current_limit": current_limit,
"limit_remaining": limit_remaining,
"rate_limit_type": rate_limit_type,
"descriptor_key": key_metadata[window_key]["descriptor_key"],
}
)
return RateLimitResponse(overall_code=overall_code, statuses=statuses)
async def should_rate_limit(
self,
descriptors: List[RateLimitDescriptor],
parent_otel_span: Optional[Span] = None,
read_only: bool = False,
) -> RateLimitResponse:
"""
Check if any of the rate limit descriptors should be rate limited.
Returns a RateLimitResponse with the overall code and status for each descriptor.
Uses batch operations for Redis to improve performance.
"""
now = datetime.now().timestamp()
now_int = int(now) # Convert to integer for Redis Lua script
# Collect all keys and their metadata upfront
keys_to_fetch: List[str] = []
key_metadata = {} # Store metadata for each key
for descriptor in descriptors:
descriptor_key = descriptor["key"]
descriptor_value = descriptor["value"]
rate_limit = descriptor.get("rate_limit", {}) or {}
requests_limit = rate_limit.get("requests_per_unit")
tokens_limit = rate_limit.get("tokens_per_unit")
max_parallel_requests_limit = rate_limit.get("max_parallel_requests")
window_size = rate_limit.get("window_size") or self.window_size
window_key = f"{{{descriptor_key}:{descriptor_value}}}:window"
rate_limit_set = False
if requests_limit is not None:
rpm_key = self.create_rate_limit_keys(
descriptor_key, descriptor_value, "requests"
)
keys_to_fetch.extend([window_key, rpm_key])
rate_limit_set = True
if tokens_limit is not None:
tpm_key = self.create_rate_limit_keys(
descriptor_key, descriptor_value, "tokens"
)
keys_to_fetch.extend([window_key, tpm_key])
rate_limit_set = True
if max_parallel_requests_limit is not None:
max_parallel_requests_key = self.create_rate_limit_keys(
descriptor_key, descriptor_value, "max_parallel_requests"
)
keys_to_fetch.extend([window_key, max_parallel_requests_key])
rate_limit_set = True
if not rate_limit_set:
continue
key_metadata[window_key] = {
"requests_limit": int(requests_limit)
if requests_limit is not None
else None,
"tokens_limit": int(tokens_limit) if tokens_limit is not None else None,
"max_parallel_requests_limit": int(max_parallel_requests_limit)
if max_parallel_requests_limit is not None
else None,
"window_size": int(window_size),
"descriptor_key": descriptor_key,
}
## CHECK IN-MEMORY CACHE
cache_values = await self.internal_usage_cache.async_batch_get_cache(
keys=keys_to_fetch,
parent_otel_span=parent_otel_span,
local_only=True,
)
if cache_values is not None:
rate_limit_response = self.is_cache_list_over_limit(
keys_to_fetch, cache_values, key_metadata
)
if rate_limit_response["overall_code"] == "OVER_LIMIT":
return rate_limit_response
## IF under limit, check Redis
if self.batch_rate_limiter_script is not None:
cache_values = await self.batch_rate_limiter_script(
keys=keys_to_fetch,
args=[now_int, self.window_size], # Use integer timestamp
)
# update in-memory cache with new values
for i in range(0, len(cache_values), 2):
window_key = keys_to_fetch[i]
counter_key = keys_to_fetch[i + 1]
window_value = cache_values[i]
counter_value = cache_values[i + 1]
await self.internal_usage_cache.async_set_cache(
key=counter_key,
value=counter_value,
ttl=self.window_size,
litellm_parent_otel_span=parent_otel_span,
local_only=True,
)
await self.internal_usage_cache.async_set_cache(
key=window_key,
value=window_value,
ttl=self.window_size,
litellm_parent_otel_span=parent_otel_span,
local_only=True,
)
else:
cache_values = await self.in_memory_cache_sliding_window(
keys=keys_to_fetch,
now_int=now_int,
window_size=self.window_size,
)
rate_limit_response = self.is_cache_list_over_limit(
keys_to_fetch, cache_values, key_metadata
)
return rate_limit_response
async def async_pre_call_hook(
self,
user_api_key_dict: UserAPIKeyAuth,
cache: DualCache,
data: dict,
call_type: str,
):
"""
Pre-call hook to check rate limits before making the API call.
"""
from litellm.proxy.auth.auth_utils import (
get_key_model_rpm_limit,
get_key_model_tpm_limit,
)
verbose_proxy_logger.debug("Inside Rate Limit Pre-Call Hook")
# Create rate limit descriptors
descriptors = []
# API Key rate limits
if user_api_key_dict.api_key:
descriptors.append(
RateLimitDescriptor(
key="api_key",
value=user_api_key_dict.api_key,
rate_limit={
"requests_per_unit": user_api_key_dict.rpm_limit,
"tokens_per_unit": user_api_key_dict.tpm_limit,
"max_parallel_requests": user_api_key_dict.max_parallel_requests,
"window_size": self.window_size, # 1 minute window
},
)
)
# User rate limits
if user_api_key_dict.user_id:
descriptors.append(
RateLimitDescriptor(
key="user",
value=user_api_key_dict.user_id,
rate_limit={
"requests_per_unit": user_api_key_dict.user_rpm_limit,
"tokens_per_unit": user_api_key_dict.user_tpm_limit,
"window_size": self.window_size,
},
)
)
# Team rate limits
if user_api_key_dict.team_id:
descriptors.append(
RateLimitDescriptor(
key="team",
value=user_api_key_dict.team_id,
rate_limit={
"requests_per_unit": user_api_key_dict.team_rpm_limit,
"tokens_per_unit": user_api_key_dict.team_tpm_limit,
"window_size": self.window_size,
},
)
)
# End user rate limits
if user_api_key_dict.end_user_id:
descriptors.append(
RateLimitDescriptor(
key="end_user",
value=user_api_key_dict.end_user_id,
rate_limit={
"requests_per_unit": user_api_key_dict.end_user_rpm_limit,
"tokens_per_unit": user_api_key_dict.end_user_tpm_limit,
"window_size": self.window_size,
},
)
)
# Model rate limits
requested_model = data.get("model", None)
if requested_model and (
get_key_model_tpm_limit(user_api_key_dict) is not None
or get_key_model_rpm_limit(user_api_key_dict) is not None
):
_tpm_limit_for_key_model = get_key_model_tpm_limit(user_api_key_dict) or {}
_rpm_limit_for_key_model = get_key_model_rpm_limit(user_api_key_dict) or {}
should_check_rate_limit = False
if requested_model in _tpm_limit_for_key_model:
should_check_rate_limit = True
elif requested_model in _rpm_limit_for_key_model:
should_check_rate_limit = True
if should_check_rate_limit:
model_specific_tpm_limit: Optional[int] = None
model_specific_rpm_limit: Optional[int] = None
if requested_model in _tpm_limit_for_key_model:
model_specific_tpm_limit = _tpm_limit_for_key_model[requested_model]
if requested_model in _rpm_limit_for_key_model:
model_specific_rpm_limit = _rpm_limit_for_key_model[requested_model]
descriptors.append(
RateLimitDescriptor(
key="model_per_key",
value=f"{user_api_key_dict.api_key}:{requested_model}",
rate_limit={
"requests_per_unit": model_specific_rpm_limit,
"tokens_per_unit": model_specific_tpm_limit,
"window_size": self.window_size,
},
)
)
# Check rate limits
response = await self.should_rate_limit(
descriptors=descriptors,
parent_otel_span=user_api_key_dict.parent_otel_span,
)
if response["overall_code"] == "OVER_LIMIT":
# Find which descriptor hit the limit
for i, status in enumerate(response["statuses"]):
if status["code"] == "OVER_LIMIT":
descriptor = descriptors[i]
raise HTTPException(
status_code=429,
detail=f"Rate limit exceeded for {descriptor['key']}: {descriptor['value']}. Remaining: {status['limit_remaining']}",
headers={
"retry-after": str(self.window_size)
}, # Retry after 1 minute
)
else:
# add descriptors to request headers
data["litellm_proxy_rate_limit_response"] = response
def _create_pipeline_operations(
self,
key: str,
value: str,
rate_limit_type: Literal["requests", "tokens", "max_parallel_requests"],
total_tokens: int,
) -> List["RedisPipelineIncrementOperation"]:
"""
Create pipeline operations for TPM increments
"""
from litellm.types.caching import RedisPipelineIncrementOperation
pipeline_operations: List[RedisPipelineIncrementOperation] = []
counter_key = self.create_rate_limit_keys(
key=key,
value=value,
rate_limit_type="tokens",
)
pipeline_operations.append(
RedisPipelineIncrementOperation(
key=counter_key,
increment_value=total_tokens,
ttl=self.window_size,
)
)
return pipeline_operations
def get_rate_limit_type(self) -> Literal["output", "input", "total"]:
from litellm.proxy.proxy_server import general_settings
specified_rate_limit_type = general_settings.get(
"token_rate_limit_type", "output"
)
if not specified_rate_limit_type or specified_rate_limit_type not in [
"output",
"input",
"total",
]:
return "total" # default to total
return specified_rate_limit_type
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Update TPM usage on successful API calls by incrementing counters using pipeline
"""
from litellm.litellm_core_utils.core_helpers import (
_get_parent_otel_span_from_kwargs,
)
from litellm.proxy.common_utils.callback_utils import (
get_model_group_from_litellm_kwargs,
)
from litellm.types.caching import RedisPipelineIncrementOperation
from litellm.types.utils import ModelResponse, Usage
rate_limit_type = self.get_rate_limit_type()
litellm_parent_otel_span: Union[Span, None] = _get_parent_otel_span_from_kwargs(
kwargs
)
try:
verbose_proxy_logger.debug(
"INSIDE parallel request limiter ASYNC SUCCESS LOGGING"
)
# Get metadata from kwargs
user_api_key = kwargs["litellm_params"]["metadata"].get("user_api_key")
user_api_key_user_id = kwargs["litellm_params"]["metadata"].get(
"user_api_key_user_id"
)
user_api_key_team_id = kwargs["litellm_params"]["metadata"].get(
"user_api_key_team_id"
)
user_api_key_end_user_id = kwargs.get("user") or kwargs["litellm_params"][
"metadata"
].get("user_api_key_end_user_id")
model_group = get_model_group_from_litellm_kwargs(kwargs)
# Get total tokens from response
total_tokens = 0
if isinstance(response_obj, ModelResponse):
_usage = getattr(response_obj, "usage", None)
if _usage and isinstance(_usage, Usage):
if rate_limit_type == "output":
total_tokens = _usage.completion_tokens
elif rate_limit_type == "input":
total_tokens = _usage.prompt_tokens
elif rate_limit_type == "total":
total_tokens = _usage.total_tokens
# Create pipeline operations for TPM increments
pipeline_operations: List[RedisPipelineIncrementOperation] = []
# API Key TPM
if user_api_key:
# MAX PARALLEL REQUESTS - only support for API Key, just decrement the counter
counter_key = self.create_rate_limit_keys(
key="api_key",
value=user_api_key,
rate_limit_type="max_parallel_requests",
)
pipeline_operations.append(
RedisPipelineIncrementOperation(
key=counter_key,
increment_value=-1,
ttl=self.window_size,
)
)
pipeline_operations.extend(
self._create_pipeline_operations(
key="api_key",
value=user_api_key,
rate_limit_type="tokens",
total_tokens=total_tokens,
)
)
# User TPM
if user_api_key_user_id:
# TPM
pipeline_operations.extend(
self._create_pipeline_operations(
key="user",
value=user_api_key_user_id,
rate_limit_type="tokens",
total_tokens=total_tokens,
)
)
# Team TPM
if user_api_key_team_id:
pipeline_operations.extend(
self._create_pipeline_operations(
key="team",
value=user_api_key_team_id,
rate_limit_type="tokens",
total_tokens=total_tokens,
)
)
# End User TPM
if user_api_key_end_user_id:
pipeline_operations.extend(
self._create_pipeline_operations(
key="end_user",
value=user_api_key_end_user_id,
rate_limit_type="tokens",
total_tokens=total_tokens,
)
)
# Model-specific TPM
if model_group and user_api_key:
pipeline_operations.extend(
self._create_pipeline_operations(
key="model_per_key",
value=f"{user_api_key}:{model_group}",
rate_limit_type="tokens",
total_tokens=total_tokens,
)
)
# Execute all increments in a single pipeline
if pipeline_operations:
await self.internal_usage_cache.dual_cache.async_increment_cache_pipeline(
increment_list=pipeline_operations,
litellm_parent_otel_span=litellm_parent_otel_span,
)
except Exception as e:
verbose_proxy_logger.exception(
f"Error in rate limit success event: {str(e)}"
)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
"""
Decrement max parallel requests counter for the API Key
"""
from litellm.litellm_core_utils.core_helpers import (
_get_parent_otel_span_from_kwargs,
)
from litellm.types.caching import RedisPipelineIncrementOperation
try:
litellm_parent_otel_span: Union[
Span, None
] = _get_parent_otel_span_from_kwargs(kwargs)
user_api_key = kwargs["litellm_params"]["metadata"].get("user_api_key")
pipeline_operations: List[RedisPipelineIncrementOperation] = []
if user_api_key:
# MAX PARALLEL REQUESTS - only support for API Key, just decrement the counter
counter_key = self.create_rate_limit_keys(
key="api_key",
value=user_api_key,
rate_limit_type="max_parallel_requests",
)
pipeline_operations.append(
RedisPipelineIncrementOperation(
key=counter_key,
increment_value=-1,
ttl=self.window_size,
)
)
# Execute all increments in a single pipeline
if pipeline_operations:
await self.internal_usage_cache.dual_cache.async_increment_cache_pipeline(
increment_list=pipeline_operations,
litellm_parent_otel_span=litellm_parent_otel_span,
)
except Exception as e:
verbose_proxy_logger.exception(
f"Error in rate limit failure event: {str(e)}"
)
async def async_post_call_success_hook(
self, data: dict, user_api_key_dict: UserAPIKeyAuth, response
):
"""
Post-call hook to update rate limit headers in the response.
"""
try:
from pydantic import BaseModel
litellm_proxy_rate_limit_response = cast(
Optional[RateLimitResponse],
data.get("litellm_proxy_rate_limit_response", None),
)
if litellm_proxy_rate_limit_response is not None:
# Update response headers
if hasattr(response, "_hidden_params"):
_hidden_params = getattr(response, "_hidden_params")
else:
_hidden_params = None
if _hidden_params is not None and (
isinstance(_hidden_params, BaseModel)
or isinstance(_hidden_params, dict)
):
if isinstance(_hidden_params, BaseModel):
_hidden_params = _hidden_params.model_dump()
_additional_headers = (
_hidden_params.get("additional_headers", {}) or {}
)
# Add rate limit headers
for status in litellm_proxy_rate_limit_response["statuses"]:
prefix = f"x-ratelimit-{status['descriptor_key']}"
_additional_headers[
f"{prefix}-remaining-{status['rate_limit_type']}"
] = status["limit_remaining"]
_additional_headers[
f"{prefix}-limit-{status['rate_limit_type']}"
] = status["current_limit"]
setattr(
response,
"_hidden_params",
{**_hidden_params, "additional_headers": _additional_headers},
)
except Exception as e:
verbose_proxy_logger.exception(
f"Error in rate limit post-call hook: {str(e)}"
)
|