Spaces:
Configuration error
Configuration error
File size: 9,440 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import asyncio
import traceback
from typing import List
import orjson
from fastapi import APIRouter, Depends, File, HTTPException, Request, Response, status
from fastapi.responses import ORJSONResponse
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import UserAPIKeyAuth, user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
from litellm.proxy.route_llm_request import route_request
router = APIRouter()
import io
from fastapi import UploadFile
async def uploadfile_to_bytesio(upload: UploadFile) -> io.BytesIO:
"""
Read a FastAPI UploadFile into a BytesIO and set .name so OpenAI SDK
infers filename/content-type correctly.
"""
data = await upload.read()
buffer = io.BytesIO(data)
buffer.name = upload.filename
return buffer
async def batch_to_bytesio(
uploads: Optional[List[UploadFile]],
) -> Optional[List[io.BytesIO]]:
"""
Convert a list of UploadFiles to a list of BytesIO buffers, or None.
"""
if not uploads:
return None
return [await uploadfile_to_bytesio(u) for u in uploads]
@router.post(
"/v1/images/generations",
dependencies=[Depends(user_api_key_auth)],
response_class=ORJSONResponse,
tags=["images"],
)
@router.post(
"/images/generations",
dependencies=[Depends(user_api_key_auth)],
response_class=ORJSONResponse,
tags=["images"],
)
@router.post(
"/openai/deployments/{model:path}/images/generations",
dependencies=[Depends(user_api_key_auth)],
response_class=ORJSONResponse,
tags=["images"],
) # azure compatible endpoint
async def image_generation(
request: Request,
fastapi_response: Response,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
model: Optional[str] = None,
):
from litellm.proxy.proxy_server import (
add_litellm_data_to_request,
general_settings,
llm_router,
proxy_config,
proxy_logging_obj,
user_model,
version,
)
data = {}
try:
# Use orjson to parse JSON data, orjson speeds up requests significantly
body = await request.body()
data = orjson.loads(body)
# Include original request and headers in the data
data = await add_litellm_data_to_request(
data=data,
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
data["model"] = (
model
or general_settings.get("image_generation_model", None) # server default
or user_model # model name passed via cli args
or data.get("model", None) # default passed in http request
)
if user_model:
data["model"] = user_model
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data / reject request before calling the model
data = await proxy_logging_obj.pre_call_hook(
user_api_key_dict=user_api_key_dict, data=data, call_type="image_generation"
)
## ROUTE TO CORRECT ENDPOINT ##
llm_call = await route_request(
data=data,
route_type="aimage_generation",
llm_router=llm_router,
user_model=user_model,
)
response = await llm_call
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
response_cost = hidden_params.get("response_cost", None) or ""
litellm_call_id = hidden_params.get("litellm_call_id", None) or ""
fastapi_response.headers.update(
ProxyBaseLLMRequestProcessing.get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
call_id=litellm_call_id,
request_data=data,
hidden_params=hidden_params,
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.error(
"litellm.proxy.proxy_server.image_generation(): Exception occured - {}".format(
str(e)
)
)
verbose_proxy_logger.debug(traceback.format_exc())
if isinstance(e, HTTPException):
raise ProxyException(
message=getattr(e, "message", str(e)),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
)
else:
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
openai_code=getattr(e, "code", None),
code=getattr(e, "status_code", 500),
)
@router.post(
"/v1/images/edits",
dependencies=[Depends(user_api_key_auth)],
tags=["images"],
)
@router.post(
"/images/edits",
dependencies=[Depends(user_api_key_auth)],
tags=["images"],
)
@router.post(
"/openai/deployments/{model:path}/images/edits",
dependencies=[Depends(user_api_key_auth)],
response_class=ORJSONResponse,
tags=["images"],
) # azure compatible endpoint
async def image_edit_api(
request: Request,
fastapi_response: Response,
image: List[UploadFile] = File(...),
mask: Optional[List[UploadFile]] = File(None),
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
model: Optional[str] = None,
):
"""
Follows the OpenAI Images API spec: https://platform.openai.com/docs/api-reference/images/create
```bash
curl -s -D >(grep -i x-request-id >&2) \
-o >(jq -r '.data[0].b64_json' | base64 --decode > gift-basket.png) \
-X POST "http://localhost:4000/v1/images/edits" \
-H "Authorization: Bearer sk-1234" \
-F "model=gpt-image-1" \
-F "image[][email protected]" \
-F 'prompt=Create a studio ghibli image of this'
```
"""
from litellm.proxy.proxy_server import (
_read_request_body,
general_settings,
llm_router,
proxy_config,
proxy_logging_obj,
select_data_generator,
user_api_base,
user_max_tokens,
user_model,
user_request_timeout,
user_temperature,
version,
)
#########################################################
# Read request body and convert UploadFiles to BytesIO
#########################################################
data = await _read_request_body(request=request)
image_files = await batch_to_bytesio(image)
mask_files = await batch_to_bytesio(mask)
if image_files:
data["image"] = image_files
if mask_files:
data["mask"] = mask_files
data["model"] = (
model
or general_settings.get("image_generation_model", None) # server default
or user_model # model name passed via cli args
or data.get("model", None) # default passed in http request
)
#########################################################
# Process request
#########################################################
processor = ProxyBaseLLMRequestProcessing(data=data)
try:
return await processor.base_process_llm_request(
request=request,
fastapi_response=fastapi_response,
user_api_key_dict=user_api_key_dict,
route_type="aimage_edit",
proxy_logging_obj=proxy_logging_obj,
llm_router=llm_router,
general_settings=general_settings,
proxy_config=proxy_config,
select_data_generator=select_data_generator,
model=None,
user_model=user_model,
user_temperature=user_temperature,
user_request_timeout=user_request_timeout,
user_max_tokens=user_max_tokens,
user_api_base=user_api_base,
version=version,
)
except Exception as e:
raise await processor._handle_llm_api_exception(
e=e,
user_api_key_dict=user_api_key_dict,
proxy_logging_obj=proxy_logging_obj,
version=version,
)
|