Spaces:
Configuration error
Configuration error
File size: 19,757 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import os
import sys
import traceback
import json
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from openai import APITimeoutError as Timeout
import litellm
litellm.num_retries = 0
import asyncio
import logging
from typing import Optional
import openai
from test_openai_batches_and_files import load_vertex_ai_credentials
from litellm import create_fine_tuning_job
from litellm._logging import verbose_logger
from litellm.llms.vertex_ai.fine_tuning.handler import (
FineTuningJobCreate,
VertexFineTuningAPI,
)
from litellm.types.llms.openai import Hyperparameters
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import StandardLoggingPayload
from unittest.mock import patch, MagicMock, AsyncMock
vertex_finetune_api = VertexFineTuningAPI()
class TestCustomLogger(CustomLogger):
def __init__(self):
super().__init__()
self.standard_logging_object: Optional[StandardLoggingPayload] = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(
"Success event logged with kwargs=",
kwargs,
"and response_obj=",
response_obj,
)
self.standard_logging_object = kwargs["standard_logging_object"]
@pytest.mark.asyncio
async def test_create_fine_tune_jobs_async():
try:
custom_logger = TestCustomLogger()
litellm.callbacks = ["datadog", custom_logger]
verbose_logger.setLevel(logging.DEBUG)
file_name = "openai_batch_completions.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_obj = await litellm.acreate_file(
file=open(file_path, "rb"),
purpose="fine-tune",
custom_llm_provider="openai",
)
print("Response from creating file=", file_obj)
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gpt-3.5-turbo-0125",
training_file=file_obj.id,
)
print(
"response from litellm.create_fine_tuning_job=", create_fine_tuning_response
)
assert create_fine_tuning_response.id is not None
assert create_fine_tuning_response.model == "gpt-3.5-turbo-0125"
await asyncio.sleep(2)
_logged_standard_logging_object = custom_logger.standard_logging_object
assert _logged_standard_logging_object is not None
print(
"custom_logger.standard_logging_object=",
json.dumps(_logged_standard_logging_object, indent=4),
)
assert _logged_standard_logging_object["model"] == "gpt-3.5-turbo-0125"
assert _logged_standard_logging_object["id"] == create_fine_tuning_response.id
# list fine tuning jobs
print("listing ft jobs")
ft_jobs = await litellm.alist_fine_tuning_jobs(limit=2)
print("response from litellm.list_fine_tuning_jobs=", ft_jobs)
assert len(list(ft_jobs)) > 0
# retrieve fine tuning job
response = await litellm.aretrieve_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
)
print("response from litellm.retrieve_fine_tuning_job=", response)
# delete file
await litellm.afile_delete(
file_id=file_obj.id,
)
# cancel ft job
response = await litellm.acancel_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
)
print("response from litellm.cancel_fine_tuning_job=", response)
assert response.status == "cancelled"
assert response.id == create_fine_tuning_response.id
except openai.RateLimitError:
pass
except Exception as e:
if "Job has already completed" in str(e):
return
else:
pytest.fail(f"Error occurred: {e}")
pass
@pytest.mark.asyncio
async def test_azure_create_fine_tune_jobs_async():
try:
verbose_logger.setLevel(logging.DEBUG)
file_name = "azure_fine_tune.jsonl"
_current_dir = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(_current_dir, file_name)
file_id = "file-5e4b20ecbd724182b9964f3cd2ab7212"
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gpt-35-turbo-1106",
training_file=file_id,
custom_llm_provider="azure",
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print(
"response from litellm.create_fine_tuning_job=", create_fine_tuning_response
)
assert create_fine_tuning_response.id is not None
# response from Example/mocked endpoint
assert create_fine_tuning_response.model == "davinci-002"
# list fine tuning jobs
print("listing ft jobs")
ft_jobs = await litellm.alist_fine_tuning_jobs(
limit=2,
custom_llm_provider="azure",
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print("response from litellm.list_fine_tuning_jobs=", ft_jobs)
# cancel ft job
response = await litellm.acancel_fine_tuning_job(
fine_tuning_job_id=create_fine_tuning_response.id,
custom_llm_provider="azure",
api_key=os.getenv("AZURE_SWEDEN_API_KEY"),
api_base="https://exampleopenaiendpoint-production.up.railway.app",
)
print("response from litellm.cancel_fine_tuning_job=", response)
assert response.status == "cancelled"
assert response.id == create_fine_tuning_response.id
except openai.RateLimitError:
pass
except Exception as e:
if "Job has already completed" in str(e):
pass
else:
pytest.fail(f"Error occurred: {e}")
pass
@pytest.mark.asyncio()
async def test_create_vertex_fine_tune_jobs_mocked():
load_vertex_ai_credentials()
# Define reusable variables for the test
project_id = "633608382793"
location = "us-central1"
job_id = "3978211980451250176"
base_model = "gemini-1.0-pro-002"
tuned_model_name = f"{base_model}-f9259f2c-3fdf-4dd3-9413-afef2bfd24f5"
training_file = (
"gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
)
create_time = "2024-12-31T22:40:20.211140Z"
mock_response = AsyncMock()
mock_response.status_code = 200
mock_response.json = MagicMock(
return_value={
"name": f"projects/{project_id}/locations/{location}/tuningJobs/{job_id}",
"tunedModelDisplayName": tuned_model_name,
"baseModel": base_model,
"supervisedTuningSpec": {"trainingDatasetUri": training_file},
"state": "JOB_STATE_PENDING",
"createTime": create_time,
"updateTime": create_time,
}
)
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
return_value=mock_response,
) as mock_post:
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model=base_model,
custom_llm_provider="vertex_ai",
training_file=training_file,
vertex_project=project_id,
vertex_location=location,
)
# Verify the request
mock_post.assert_called_once()
# Validate the request
assert mock_post.call_args.kwargs["json"] == {
"baseModel": base_model,
"supervisedTuningSpec": {"training_dataset_uri": training_file},
"tunedModelDisplayName": None,
}
# Verify the response
response_json = json.loads(create_fine_tuning_response.model_dump_json())
assert (
response_json["id"]
== f"projects/{project_id}/locations/{location}/tuningJobs/{job_id}"
)
assert response_json["model"] == base_model
assert response_json["object"] == "fine_tuning.job"
assert response_json["fine_tuned_model"] == tuned_model_name
assert response_json["status"] == "queued"
assert response_json["training_file"] == training_file
assert (
response_json["created_at"] == 1735684820
) # Unix timestamp for create_time
assert response_json["error"] is None
assert response_json["finished_at"] is None
assert response_json["validation_file"] is None
assert response_json["trained_tokens"] is None
assert response_json["estimated_finish"] is None
assert response_json["integrations"] == []
@pytest.mark.asyncio()
async def test_create_vertex_fine_tune_jobs_mocked_with_hyperparameters():
load_vertex_ai_credentials()
# Define reusable variables for the test
project_id = "633608382793"
location = "us-central1"
job_id = "3978211980451250176"
base_model = "gemini-1.0-pro-002"
tuned_model_name = f"{base_model}-f9259f2c-3fdf-4dd3-9413-afef2bfd24f5"
training_file = (
"gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
)
create_time = "2024-12-31T22:40:20.211140Z"
mock_response = AsyncMock()
mock_response.status_code = 200
mock_response.json = MagicMock(
return_value={
"name": f"projects/{project_id}/locations/{location}/tuningJobs/{job_id}",
"tunedModelDisplayName": tuned_model_name,
"baseModel": base_model,
"supervisedTuningSpec": {"trainingDatasetUri": training_file},
"state": "JOB_STATE_PENDING",
"createTime": create_time,
"updateTime": create_time,
}
)
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
return_value=mock_response,
) as mock_post:
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model=base_model,
custom_llm_provider="vertex_ai",
training_file=training_file,
vertex_project=project_id,
vertex_location=location,
hyperparameters={
"n_epochs": 5,
"learning_rate_multiplier": 0.2,
"adapter_size": "SMALL",
},
)
# Verify the request
mock_post.assert_called_once()
# Validate the request
assert mock_post.call_args.kwargs["json"] == {
"baseModel": base_model,
"supervisedTuningSpec": {
"training_dataset_uri": training_file,
"hyperParameters": {
"epoch_count": 5,
"learning_rate_multiplier": 0.2,
"adapter_size": "SMALL",
},
},
"tunedModelDisplayName": None,
}
# Verify the response
response_json = json.loads(create_fine_tuning_response.model_dump_json())
assert (
response_json["id"]
== f"projects/{project_id}/locations/{location}/tuningJobs/{job_id}"
)
assert response_json["model"] == base_model
assert response_json["object"] == "fine_tuning.job"
assert response_json["fine_tuned_model"] == tuned_model_name
assert response_json["status"] == "queued"
assert response_json["training_file"] == training_file
assert (
response_json["created_at"] == 1735684820
) # Unix timestamp for create_time
assert response_json["error"] is None
assert response_json["finished_at"] is None
assert response_json["validation_file"] is None
assert response_json["trained_tokens"] is None
assert response_json["estimated_finish"] is None
assert response_json["integrations"] == []
# Testing OpenAI -> Vertex AI param mapping
def test_convert_openai_request_to_vertex_basic():
openai_data = FineTuningJobCreate(
training_file="gs://bucket/train.jsonl",
validation_file="gs://bucket/val.jsonl",
model="text-davinci-002",
hyperparameters={"n_epochs": 3, "learning_rate_multiplier": 0.1},
suffix="my_fine_tuned_model",
)
result = vertex_finetune_api.convert_openai_request_to_vertex(openai_data)
print("converted vertex ai result=", json.dumps(result, indent=4))
assert result["baseModel"] == "text-davinci-002"
assert result["tunedModelDisplayName"] == "my_fine_tuned_model"
assert (
result["supervisedTuningSpec"]["training_dataset_uri"]
== "gs://bucket/train.jsonl"
)
assert (
result["supervisedTuningSpec"]["validation_dataset"] == "gs://bucket/val.jsonl"
)
assert result["supervisedTuningSpec"]["hyperParameters"]["epoch_count"] == 3
assert (
result["supervisedTuningSpec"]["hyperParameters"]["learning_rate_multiplier"]
== 0.1
)
def test_convert_openai_request_to_vertex_with_adapter_size():
original_hyperparameters = {
"n_epochs": 5,
"learning_rate_multiplier": 0.2,
"adapter_size": "SMALL",
}
openai_data = FineTuningJobCreate(
training_file="gs://bucket/train.jsonl",
model="text-davinci-002",
hyperparameters=Hyperparameters(**original_hyperparameters),
suffix="custom_model",
)
result = vertex_finetune_api.convert_openai_request_to_vertex(
openai_data, original_hyperparameters=original_hyperparameters
)
print("converted vertex ai result=", json.dumps(result, indent=4))
assert result["baseModel"] == "text-davinci-002"
assert result["tunedModelDisplayName"] == "custom_model"
assert (
result["supervisedTuningSpec"]["training_dataset_uri"]
== "gs://bucket/train.jsonl"
)
assert result["supervisedTuningSpec"]["hyperParameters"]["epoch_count"] == 5
assert (
result["supervisedTuningSpec"]["hyperParameters"]["learning_rate_multiplier"]
== 0.2
)
assert result["supervisedTuningSpec"]["hyperParameters"]["adapter_size"] == "SMALL"
def test_convert_basic_openai_request_to_vertex_request():
openai_data = FineTuningJobCreate(
training_file="gs://bucket/train.jsonl",
model="gemini-1.0-pro-002",
)
result = vertex_finetune_api.convert_openai_request_to_vertex(
openai_data,
)
print("converted vertex ai result=", json.dumps(result, indent=4))
assert result["baseModel"] == "gemini-1.0-pro-002"
assert result["tunedModelDisplayName"] == None
assert (
result["supervisedTuningSpec"]["training_dataset_uri"]
== "gs://bucket/train.jsonl"
)
@pytest.mark.asyncio()
@pytest.mark.skip(reason="skipping - we run mock tests for vertex ai")
async def test_create_vertex_fine_tune_jobs():
verbose_logger.setLevel(logging.DEBUG)
# load_vertex_ai_credentials()
vertex_credentials = os.getenv("GCS_PATH_SERVICE_ACCOUNT")
print("creating fine tuning job")
create_fine_tuning_response = await litellm.acreate_fine_tuning_job(
model="gemini-1.0-pro-002",
custom_llm_provider="vertex_ai",
training_file="gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl",
vertex_project="pathrise-convert-1606954137718",
vertex_location="us-central1",
vertex_credentials=vertex_credentials,
)
print("vertex ai create fine tuning response=", create_fine_tuning_response)
assert create_fine_tuning_response.id is not None
assert create_fine_tuning_response.model == "gemini-1.0-pro-002"
assert create_fine_tuning_response.object == "fine_tuning.job"
@pytest.mark.asyncio
async def test_mock_openai_create_fine_tune_job():
"""Test that create_fine_tuning_job sends correct parameters to OpenAI"""
from openai import AsyncOpenAI
from openai.types.fine_tuning.fine_tuning_job import FineTuningJob, Hyperparameters
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(client.fine_tuning.jobs, "create") as mock_create:
mock_create.return_value = FineTuningJob(
id="ft-123",
model="gpt-3.5-turbo-0125",
created_at=1677610602,
status="validating_files",
fine_tuned_model="ft:gpt-3.5-turbo-0125:org:custom_suffix:id",
object="fine_tuning.job",
hyperparameters=Hyperparameters(
n_epochs=3,
),
organization_id="org-123",
seed=42,
training_file="file-123",
result_files=[],
)
response = await litellm.acreate_fine_tuning_job(
model="gpt-3.5-turbo-0125",
training_file="file-123",
hyperparameters={"n_epochs": 3},
suffix="custom_suffix",
client=client,
)
# Verify the request
mock_create.assert_called_once()
request_params = mock_create.call_args.kwargs
assert request_params["model"] == "gpt-3.5-turbo-0125"
assert request_params["training_file"] == "file-123"
assert request_params["hyperparameters"] == {"n_epochs": 3}
assert request_params["suffix"] == "custom_suffix"
# Verify the response
assert response.id == "ft-123"
assert response.model == "gpt-3.5-turbo-0125"
assert response.status == "validating_files"
assert response.fine_tuned_model == "ft:gpt-3.5-turbo-0125:org:custom_suffix:id"
@pytest.mark.asyncio
async def test_mock_openai_list_fine_tune_jobs():
"""Test that list_fine_tuning_jobs sends correct parameters to OpenAI"""
from openai import AsyncOpenAI
from unittest.mock import AsyncMock
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.fine_tuning.jobs, "list", new_callable=AsyncMock
) as mock_list:
# Simple mock return value - actual structure doesn't matter for this test
mock_list.return_value = []
await litellm.alist_fine_tuning_jobs(limit=2, after="ft-000", client=client)
# Only verify that the client was called with correct parameters
mock_list.assert_called_once()
request_params = mock_list.call_args.kwargs
assert request_params["limit"] == 2
assert request_params["after"] == "ft-000"
@pytest.mark.asyncio
async def test_mock_openai_cancel_fine_tune_job():
"""Test that cancel_fine_tuning_job sends correct parameters to OpenAI"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(client.fine_tuning.jobs, "cancel") as mock_cancel:
try:
await litellm.acancel_fine_tuning_job(
fine_tuning_job_id="ft-123", client=client
)
except Exception as e:
print("error=", e)
# Only verify that the client was called with correct parameters
mock_cancel.assert_called_once_with(fine_tuning_job_id="ft-123")
@pytest.mark.asyncio
async def test_mock_openai_retrieve_fine_tune_job():
"""Test that retrieve_fine_tuning_job sends correct parameters to OpenAI"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(client.fine_tuning.jobs, "retrieve") as mock_retrieve:
try:
response = await litellm.aretrieve_fine_tuning_job(
fine_tuning_job_id="ft-123", client=client
)
except Exception as e:
print("error=", e)
# Verify the request
mock_retrieve.assert_called_once_with(fine_tuning_job_id="ft-123")
|