File size: 18,681 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# What is this?
## Unit Tests for OpenAI Batches API
import asyncio
import json
import os
import sys
import traceback
import tempfile
from dotenv import load_dotenv

load_dotenv()
sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system-path

import logging
import time

import pytest
from typing import Optional
import litellm
from litellm import create_batch, create_file
from litellm._logging import verbose_logger

verbose_logger.setLevel(logging.DEBUG)

from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import StandardLoggingPayload
import random
from unittest.mock import patch, MagicMock


def load_vertex_ai_credentials():
    # Define the path to the vertex_key.json file
    print("loading vertex ai credentials")
    os.environ["GCS_FLUSH_INTERVAL"] = "1"
    filepath = os.path.dirname(os.path.abspath(__file__))
    vertex_key_path = filepath + "/pathrise-convert-1606954137718.json"

    # Read the existing content of the file or create an empty dictionary
    try:
        with open(vertex_key_path, "r") as file:
            # Read the file content
            print("Read vertexai file path")
            content = file.read()

            # If the file is empty or not valid JSON, create an empty dictionary
            if not content or not content.strip():
                service_account_key_data = {}
            else:
                # Attempt to load the existing JSON content
                file.seek(0)
                service_account_key_data = json.load(file)
    except FileNotFoundError:
        # If the file doesn't exist, create an empty dictionary
        service_account_key_data = {}

    # Update the service_account_key_data with environment variables
    private_key_id = os.environ.get("GCS_PRIVATE_KEY_ID", "")
    private_key = os.environ.get("GCS_PRIVATE_KEY", "")
    private_key = private_key.replace("\\n", "\n")
    service_account_key_data["private_key_id"] = private_key_id
    service_account_key_data["private_key"] = private_key

    # Create a temporary file
    with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
        # Write the updated content to the temporary files
        json.dump(service_account_key_data, temp_file, indent=2)

    # Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
    os.environ["GCS_PATH_SERVICE_ACCOUNT"] = os.path.abspath(temp_file.name)
    os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
    print("created gcs path service account=", os.environ["GCS_PATH_SERVICE_ACCOUNT"])


@pytest.mark.parametrize("provider", ["openai"])  # , "azure"
@pytest.mark.asyncio
async def test_create_batch(provider):
    """
    1. Create File for Batch completion
    2. Create Batch Request
    3. Retrieve the specific batch
    """
    if provider == "azure":
        # Don't have anymore Azure Quota
        return
    file_name = "openai_batch_completions.jsonl"
    _current_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.join(_current_dir, file_name)

    file_obj = await litellm.acreate_file(
        file=open(file_path, "rb"),
        purpose="batch",
        custom_llm_provider=provider,
    )
    print("Response from creating file=", file_obj)

    batch_input_file_id = file_obj.id
    assert (
        batch_input_file_id is not None
    ), "Failed to create file, expected a non null file_id but got {batch_input_file_id}"

    await asyncio.sleep(1)
    create_batch_response = await litellm.acreate_batch(
        completion_window="24h",
        endpoint="/v1/chat/completions",
        input_file_id=batch_input_file_id,
        custom_llm_provider=provider,
        metadata={"key1": "value1", "key2": "value2"},
    )

    print("response from litellm.create_batch=", create_batch_response)
    await asyncio.sleep(6)

    assert (
        create_batch_response.id is not None
    ), f"Failed to create batch, expected a non null batch_id but got {create_batch_response.id}"
    assert (
        create_batch_response.endpoint == "/v1/chat/completions"
        or create_batch_response.endpoint == "/chat/completions"
    ), f"Failed to create batch, expected endpoint to be /v1/chat/completions but got {create_batch_response.endpoint}"
    assert (
        create_batch_response.input_file_id == batch_input_file_id
    ), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"

    retrieved_batch = await litellm.aretrieve_batch(
        batch_id=create_batch_response.id, custom_llm_provider=provider
    )
    print("retrieved batch=", retrieved_batch)
    # just assert that we retrieved a non None batch

    assert retrieved_batch.id == create_batch_response.id

    # list all batches
    list_batches = await litellm.alist_batches(custom_llm_provider=provider, limit=2)
    print("list_batches=", list_batches)

    file_content = await litellm.afile_content(
        file_id=batch_input_file_id, custom_llm_provider=provider
    )

    result = file_content.content

    result_file_name = "batch_job_results_furniture.jsonl"

    with open(result_file_name, "wb") as file:
        file.write(result)

    # Cancel Batch
    cancel_batch_response = await litellm.acancel_batch(
        batch_id=create_batch_response.id,
        custom_llm_provider=provider,
    )
    print("cancel_batch_response=", cancel_batch_response)

    pass


class TestCustomLogger(CustomLogger):
    def __init__(self):
        super().__init__()
        self.standard_logging_object: Optional[StandardLoggingPayload] = None

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        print(
            "Success event logged with kwargs=",
            kwargs,
            "and response_obj=",
            response_obj,
        )
        self.standard_logging_object = kwargs["standard_logging_object"]


def cleanup_azure_files():
    """
    Delete all files for Azure - helper for when we run out of Azure Files Quota
    """
    azure_files = litellm.file_list(
        custom_llm_provider="azure",
        api_key=os.getenv("AZURE_FT_API_KEY"),
        api_base=os.getenv("AZURE_FT_API_BASE"),
    )
    print("azure_files=", azure_files)
    for _file in azure_files:
        print("deleting file=", _file)
        delete_file_response = litellm.file_delete(
            file_id=_file.id,
            custom_llm_provider="azure",
            api_key=os.getenv("AZURE_FT_API_KEY"),
            api_base=os.getenv("AZURE_FT_API_BASE"),
        )
        print("delete_file_response=", delete_file_response)
        assert delete_file_response.id == _file.id


def cleanup_azure_ft_models():
    """
    Test CLEANUP: Delete all existing fine tuning jobs for Azure
    """
    try:
        from openai import AzureOpenAI
        import requests

        client = AzureOpenAI(
            api_key=os.getenv("AZURE_FT_API_KEY"),
            azure_endpoint=os.getenv("AZURE_FT_API_BASE"),
            api_version=os.getenv("AZURE_API_VERSION"),
        )

        _list_ft_jobs = client.fine_tuning.jobs.list()
        print("_list_ft_jobs=", _list_ft_jobs)

        # delete all ft jobs make post request to this
        # Delete all fine-tuning jobs
        for job in _list_ft_jobs:
            try:
                endpoint = os.getenv("AZURE_FT_API_BASE").rstrip("/")
                url = f"{endpoint}/openai/fine_tuning/jobs/{job.id}?api-version=2024-10-21"
                print("url=", url)

                headers = {
                    "api-key": os.getenv("AZURE_FT_API_KEY"),
                    "Content-Type": "application/json",
                }

                response = requests.delete(url, headers=headers)
                print(f"Deleting job {job.id}: Status {response.status_code}")
                if response.status_code != 204:
                    print(f"Error deleting job {job.id}: {response.text}")

            except Exception as e:
                print(f"Error deleting job {job.id}: {str(e)}")
    except Exception as e:
        print(f"Error on cleanup_azure_ft_models: {str(e)}")


@pytest.mark.parametrize("provider", ["openai"])
@pytest.mark.asyncio()
@pytest.mark.flaky(retries=3, delay=1)
async def test_async_create_batch(provider):
    """
    1. Create File for Batch completion
    2. Create Batch Request
    3. Retrieve the specific batch
    """
    litellm._turn_on_debug()
    print("Testing async create batch")
    litellm.logging_callback_manager._reset_all_callbacks()
    custom_logger = TestCustomLogger()
    litellm.callbacks = [custom_logger, "datadog"]

    file_name = "openai_batch_completions.jsonl"
    _current_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.join(_current_dir, file_name)
    file_obj = await litellm.acreate_file(
        file=open(file_path, "rb"),
        purpose="batch",
        custom_llm_provider=provider,
    )
    print("Response from creating file=", file_obj)

    await asyncio.sleep(10)
    batch_input_file_id = file_obj.id
    assert (
        batch_input_file_id is not None
    ), "Failed to create file, expected a non null file_id but got {batch_input_file_id}"

    extra_metadata_field = {
        "user_api_key_alias": "special_api_key_alias",
        "user_api_key_team_alias": "special_team_alias",
    }
    create_batch_response = await litellm.acreate_batch(
        completion_window="24h",
        endpoint="/v1/chat/completions",
        input_file_id=batch_input_file_id,
        custom_llm_provider=provider,
        metadata={"key1": "value1", "key2": "value2"},
        # litellm specific param - used for logging metadata on logging callback
        litellm_metadata=extra_metadata_field,
    )

    print("response from litellm.create_batch=", create_batch_response)

    assert (
        create_batch_response.id is not None
    ), f"Failed to create batch, expected a non null batch_id but got {create_batch_response.id}"
    assert (
        create_batch_response.endpoint == "/v1/chat/completions"
        or create_batch_response.endpoint == "/chat/completions"
    ), f"Failed to create batch, expected endpoint to be /v1/chat/completions but got {create_batch_response.endpoint}"
    assert (
        create_batch_response.input_file_id == batch_input_file_id
    ), f"Failed to create batch, expected input_file_id to be {batch_input_file_id} but got {create_batch_response.input_file_id}"

    await asyncio.sleep(6)
    # Assert that the create batch event is logged on CustomLogger
    assert custom_logger.standard_logging_object is not None
    print(
        "standard_logging_object=",
        json.dumps(custom_logger.standard_logging_object, indent=4, default=str),
    )
    assert (
        custom_logger.standard_logging_object["metadata"]["user_api_key_alias"]
        == extra_metadata_field["user_api_key_alias"]
    )
    assert (
        custom_logger.standard_logging_object["metadata"]["user_api_key_team_alias"]
        == extra_metadata_field["user_api_key_team_alias"]
    )

    retrieved_batch = await litellm.aretrieve_batch(
        batch_id=create_batch_response.id, custom_llm_provider=provider
    )
    print("retrieved batch=", retrieved_batch)
    # just assert that we retrieved a non None batch

    assert retrieved_batch.id == create_batch_response.id

    # list all batches
    list_batches = await litellm.alist_batches(custom_llm_provider=provider, limit=2)
    print("list_batches=", list_batches)

    # try to get file content for our original file

    file_content = await litellm.afile_content(
        file_id=batch_input_file_id, custom_llm_provider=provider
    )

    print("file content = ", file_content)

    # file obj
    file_obj = await litellm.afile_retrieve(
        file_id=batch_input_file_id, custom_llm_provider=provider
    )
    print("file obj = ", file_obj)
    assert file_obj.id == batch_input_file_id

    # delete file
    delete_file_response = await litellm.afile_delete(
        file_id=batch_input_file_id, custom_llm_provider=provider
    )

    print("delete file response = ", delete_file_response)

    assert delete_file_response.id == batch_input_file_id

    all_files_list = await litellm.afile_list(
        custom_llm_provider=provider,
    )

    print("all_files_list = ", all_files_list)

    result_file_name = "batch_job_results_furniture.jsonl"

    with open(result_file_name, "wb") as file:
        file.write(file_content.content)

    # Cancel Batch
    cancel_batch_response = await litellm.acancel_batch(
        batch_id=create_batch_response.id,
        custom_llm_provider=provider,
    )
    print("cancel_batch_response=", cancel_batch_response)

    if random.randint(1, 3) == 1:
        print("Running random cleanup of Azure files and models...")
        cleanup_azure_files()
        cleanup_azure_ft_models()


mock_file_response = {
    "kind": "storage#object",
    "id": "litellm-local/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/5f7b99ad-9203-4430-98bf-3b45451af4cb/1739598666670574",
    "selfLink": "https://www.googleapis.com/storage/v1/b/litellm-local/o/litellm-vertex-files%2Fpublishers%2Fgoogle%2Fmodels%2Fgemini-1.5-flash-001%2F5f7b99ad-9203-4430-98bf-3b45451af4cb",
    "mediaLink": "https://storage.googleapis.com/download/storage/v1/b/litellm-local/o/litellm-vertex-files%2Fpublishers%2Fgoogle%2Fmodels%2Fgemini-1.5-flash-001%2F5f7b99ad-9203-4430-98bf-3b45451af4cb?generation=1739598666670574&alt=media",
    "name": "litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/5f7b99ad-9203-4430-98bf-3b45451af4cb",
    "bucket": "litellm-local",
    "generation": "1739598666670574",
    "metageneration": "1",
    "contentType": "application/json",
    "storageClass": "STANDARD",
    "size": "416",
    "md5Hash": "hbBNj7C8KJ7oVH+JmyRM6A==",
    "crc32c": "oDmiUA==",
    "etag": "CO7D0IT+xIsDEAE=",
    "timeCreated": "2025-02-15T05:51:06.741Z",
    "updated": "2025-02-15T05:51:06.741Z",
    "timeStorageClassUpdated": "2025-02-15T05:51:06.741Z",
    "timeFinalized": "2025-02-15T05:51:06.741Z",
}

mock_vertex_batch_response = {
    "name": "projects/123456789/locations/us-central1/batchPredictionJobs/test-batch-id-456",
    "displayName": "litellm_batch_job",
    "model": "projects/123456789/locations/us-central1/models/gemini-1.5-flash-001",
    "modelVersionId": "v1",
    "inputConfig": {
        "gcsSource": {
            "uris": [
                "gs://litellm-local/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/5f7b99ad-9203-4430-98bf-3b45451af4cb"
            ]
        }
    },
    "outputConfig": {
        "gcsDestination": {"outputUriPrefix": "gs://litellm-local/batch-outputs/"}
    },
    "dedicatedResources": {
        "machineSpec": {
            "machineType": "n1-standard-4",
            "acceleratorType": "NVIDIA_TESLA_T4",
            "acceleratorCount": 1,
        },
        "startingReplicaCount": 1,
        "maxReplicaCount": 1,
    },
    "state": "JOB_STATE_RUNNING",
    "createTime": "2025-02-15T05:51:06.741Z",
    "startTime": "2025-02-15T05:51:07.741Z",
    "updateTime": "2025-02-15T05:51:08.741Z",
    "labels": {"key1": "value1", "key2": "value2"},
    "completionStats": {"successfulCount": 0, "failedCount": 0, "remainingCount": 100},
}


@pytest.mark.asyncio
async def test_avertex_batch_prediction(monkeypatch):
    monkeypatch.setenv("GCS_BUCKET_NAME", "litellm-local")
    from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler

    client = AsyncHTTPHandler()

    async def mock_side_effect(*args, **kwargs):
        print("args", args, "kwargs", kwargs)
        url = kwargs.get("url", "")
        if "files" in url:
            mock_response.json.return_value = mock_file_response
        elif "batch" in url:
            mock_response.json.return_value = mock_vertex_batch_response
            mock_response.status_code = 200
        return mock_response

    with patch.object(
        client, "post", side_effect=mock_side_effect
    ) as mock_post, patch(
        "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post"
    ) as mock_global_post:
        # Configure mock responses
        mock_response = MagicMock()
        mock_response.raise_for_status.return_value = None

        # Set up different responses for different API calls
        
        mock_post.side_effect = mock_side_effect
        mock_global_post.side_effect = mock_side_effect

        # load_vertex_ai_credentials()
        litellm.set_verbose = True
        litellm._turn_on_debug()
        file_name = "vertex_batch_completions.jsonl"
        _current_dir = os.path.dirname(os.path.abspath(__file__))
        file_path = os.path.join(_current_dir, file_name)

        # Create file
        file_obj = await litellm.acreate_file(
            file=open(file_path, "rb"),
            purpose="batch",
            custom_llm_provider="vertex_ai",
            client=client
        )
        print("Response from creating file=", file_obj)

        assert (
            file_obj.id
            == "gs://litellm-local/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/5f7b99ad-9203-4430-98bf-3b45451af4cb"
        )

        # Create batch
        create_batch_response = await litellm.acreate_batch(
            completion_window="24h",
            endpoint="/v1/chat/completions",
            input_file_id=file_obj.id,
            custom_llm_provider="vertex_ai",
            metadata={"key1": "value1", "key2": "value2"},
        )
        print("create_batch_response=", create_batch_response)

        assert create_batch_response.id == "test-batch-id-456"
        assert (
            create_batch_response.input_file_id
            == "gs://litellm-local/litellm-vertex-files/publishers/google/models/gemini-1.5-flash-001/5f7b99ad-9203-4430-98bf-3b45451af4cb"
        )

        # Mock the retrieve batch response
        with patch(
            "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.get"
        ) as mock_get:
            mock_get_response = MagicMock()
            mock_get_response.json.return_value = mock_vertex_batch_response
            mock_get_response.status_code = 200
            mock_get_response.raise_for_status.return_value = None
            mock_get.return_value = mock_get_response

            retrieved_batch = await litellm.aretrieve_batch(
                batch_id=create_batch_response.id,
                custom_llm_provider="vertex_ai",
            )
            print("retrieved_batch=", retrieved_batch)

            assert retrieved_batch.id == "test-batch-id-456"