File size: 63,125 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
import httpx
import json
import pytest
import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, Mock, patch
import os
import uuid
import time
import base64
import inspect

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path
import litellm
from litellm.exceptions import BadRequestError
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
    CustomStreamWrapper,
    get_supported_openai_params,
    get_optional_params,
    ProviderConfigManager,
)
from litellm.main import stream_chunk_builder
from typing import Union
from litellm.types.utils import Usage, ModelResponse
# test_example.py
from abc import ABC, abstractmethod
from openai import OpenAI


def _usage_format_tests(usage: litellm.Usage):
    """
    OpenAI prompt caching
    - prompt_tokens = sum of non-cache hit tokens + cache-hit tokens
    - total_tokens = prompt_tokens + completion_tokens

    Example
    ```
    "usage": {
        "prompt_tokens": 2006,
        "completion_tokens": 300,
        "total_tokens": 2306,
        "prompt_tokens_details": {
            "cached_tokens": 1920
        },
        "completion_tokens_details": {
            "reasoning_tokens": 0
        }
        # ANTHROPIC_ONLY #
        "cache_creation_input_tokens": 0
    }
    ```
    """
    print(f"usage={usage}")
    assert usage.total_tokens == usage.prompt_tokens + usage.completion_tokens

    if usage.prompt_tokens_details is not None:
        assert usage.prompt_tokens > usage.prompt_tokens_details.cached_tokens


class BaseLLMChatTest(ABC):
    """
    Abstract base test class that enforces a common test across all test classes.
    """

    @property
    def completion_function(self):
        return litellm.completion

    @property
    def async_completion_function(self):
        return litellm.acompletion

    @abstractmethod
    def get_base_completion_call_args(self) -> dict:
        """Must return the base completion call args"""
        pass

    def get_base_completion_call_args_with_reasoning_model(self) -> dict:
        """Must return the base completion call args with reasoning_effort"""
        return {}

    @pytest.fixture(autouse=True)
    def _handle_rate_limits(self):
        """Fixture to handle rate limit errors for all test methods"""
        try:
            yield
        except litellm.RateLimitError:
            pytest.skip("Rate limit exceeded")
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

    def test_developer_role_translation(self):
        """
        Test that the developer role is translated correctly for non-OpenAI providers.

        Translate `developer` role to `system` role for non-OpenAI providers.
        """
        base_completion_call_args = self.get_base_completion_call_args()
        messages = [
            {
                "role": "developer",
                "content": "Be a good bot!",
            },
            {
                "role": "user",
                "content": [{"type": "text", "text": "Hello, how are you?"}],
            },
        ]
        try:
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
            )
            assert response is not None
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        assert response.choices[0].message.content is not None

    def test_content_list_handling(self):
        """Check if content list is supported by LLM API"""
        base_completion_call_args = self.get_base_completion_call_args()
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": "Hello, how are you?"}],
            }
        ]
        try:
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
            )
            assert response is not None
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        # for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
        assert response.choices[0].message.content is not None

    def test_streaming(self):
        """Check if litellm handles streaming correctly"""
        from litellm.types.utils import ModelResponseStream
        from typing import Optional
        base_completion_call_args = self.get_base_completion_call_args()
        # litellm.set_verbose = True
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": "Hello, how are you?"}],
            }
        ]
        try:
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                stream=True,
            )
            assert response is not None
            assert isinstance(response, CustomStreamWrapper)
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        # for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
        chunks = []
        created_at: Optional[int] = None
        for chunk in response:
            print(chunk)
            chunks.append(chunk)
            if isinstance(chunk, ModelResponseStream):
                if created_at is None:
                    created_at = chunk.created
                assert chunk.created == created_at

        resp = litellm.stream_chunk_builder(chunks=chunks)
        print(resp)

        # assert resp.usage.prompt_tokens > 0
        # assert resp.usage.completion_tokens > 0
        # assert resp.usage.total_tokens > 0

    def test_pydantic_model_input(self):
        litellm.set_verbose = True

        from litellm import completion, Message

        base_completion_call_args = self.get_base_completion_call_args()
        messages = [Message(content="Hello, how are you?", role="user")]

        self.completion_function(**base_completion_call_args, messages=messages)


    def test_web_search(self):
        from litellm.utils import supports_web_search
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm._turn_on_debug()

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_web_search(base_completion_call_args["model"], None):
            pytest.skip("Model does not support web search")

        response = self.completion_function(
            **base_completion_call_args,
            messages=[{"role": "user", "content": "What's the weather like in Boston today?"}],
            web_search_options={},
            max_tokens=100,
        )

        assert response is not None

        print(f"response={response}")

    def test_url_context(self):
        from litellm.utils import supports_url_context
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm._turn_on_debug()

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_url_context(base_completion_call_args["model"], None):
            pytest.skip("Model does not support url context")

        response = self.completion_function(
            **base_completion_call_args,
            messages=[{"role": "user", "content": "Summarize the content of this URL: https://en.wikipedia.org/wiki/Artificial_intelligence"}],
            tools=[{"urlContext": {}}],
        )

        assert response is not None
        print(f"response={response}")

    @pytest.mark.parametrize("sync_mode", [True, False])
    @pytest.mark.asyncio
    async def test_pdf_handling(self, pdf_messages, sync_mode):
        from litellm.utils import supports_pdf_input
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm._turn_on_debug()


        image_content = [
            {"type": "text", "text": "What's this file about?"},
            {
                "type": "file",
                "file": {
                    "file_data": pdf_messages,
                },
            },
        ]

        image_messages = [{"role": "user", "content": image_content}]

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_pdf_input(base_completion_call_args["model"], None):
            pytest.skip("Model does not support image input")

        if sync_mode:
            response = self.completion_function(
                **base_completion_call_args,
                messages=image_messages,
            )
        else:
            response = await self.async_completion_function(
                **base_completion_call_args,
                messages=image_messages,
            )

        assert response is not None

    @pytest.mark.asyncio
    async def test_async_pdf_handling_with_file_id(self):
        from litellm.utils import supports_pdf_input
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm._turn_on_debug()


        image_content = [
            {"type": "text", "text": "What's this file about?"},
            {
                "type": "file",
                "file": {
                    "file_id": "https://upload.wikimedia.org/wikipedia/commons/2/20/Re_example.pdf"
                },
            },
        ]

        image_messages = [{"role": "user", "content": image_content}]

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_pdf_input(base_completion_call_args["model"], None):
            pytest.skip("Model does not support image input")

        response = await self.async_completion_function(
            **base_completion_call_args,
            messages=image_messages,
        )

        assert response is not None
    
    
    def test_file_data_unit_test(self, pdf_messages):
        from litellm.utils import supports_pdf_input, return_raw_request
        from litellm.types.utils import CallTypes
        from litellm.litellm_core_utils.prompt_templates.factory import convert_to_anthropic_image_obj

        media_chunk = convert_to_anthropic_image_obj(
            openai_image_url=pdf_messages,
            format=None,
        )

        file_content = [
            {"type": "text", "text": "What's this file about?"},
            {
                "type": "file",
                "file": {
                    "file_data": pdf_messages,
                }
            },
        ]

        image_messages = [{"role": "user", "content": file_content}]

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_pdf_input(base_completion_call_args["model"], None):
            pytest.skip("Model does not support image input")

        raw_request = return_raw_request(
            endpoint=CallTypes.completion,
            kwargs={**base_completion_call_args, "messages": image_messages},
        )

        print("RAW REQUEST", raw_request)

        assert media_chunk["data"] in json.dumps(raw_request)

    def test_message_with_name(self):
        try:
            litellm.set_verbose = True
            base_completion_call_args = self.get_base_completion_call_args()
            messages = [
                {"role": "user", "content": "Hello", "name": "test_name"},
            ]
            response = self.completion_function(
                **base_completion_call_args, messages=messages
            )
            assert response is not None
        except litellm.RateLimitError:
            pass

    @pytest.mark.parametrize(
        "response_format",
        [
            {"type": "json_object"},
            {"type": "text"},
        ],
    )
    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_format(self, response_format):
        """
        Test that the JSON response format is supported by the LLM API
        """
        from litellm.utils import supports_response_schema

        base_completion_call_args = self.get_base_completion_call_args()
        litellm.set_verbose = True

        if not supports_response_schema(base_completion_call_args["model"], None):
            pytest.skip("Model does not support response schema")

        messages = [
            {
                "role": "system",
                "content": "Your output should be a JSON object with no additional properties.  ",
            },
            {
                "role": "user",
                "content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
            },
        ]

        response = self.completion_function(
            **base_completion_call_args,
            messages=messages,
            response_format=response_format,
        )

        print(f"response={response}")

        # OpenAI guarantees that the JSON schema is returned in the content
        # relevant issue: https://github.com/BerriAI/litellm/issues/6741
        assert response.choices[0].message.content is not None

    @pytest.mark.parametrize(
        "response_format",
        [
            {"type": "text"},
        ],
    )
    @pytest.mark.flaky(retries=6, delay=1)
    def test_response_format_type_text_with_tool_calls_no_tool_choice(
        self, response_format
    ):
        base_completion_call_args = self.get_base_completion_call_args()
        messages = [
            {"role": "user", "content": "What's the weather like in Boston today?"},
        ]
        tools = [
            {
                "type": "function",
                "function": {
                    "name": "get_current_weather",
                    "description": "Get the current weather in a given location",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The city and state, e.g. San Francisco, CA",
                            },
                            "unit": {
                                "type": "string",
                                "enum": ["celsius", "fahrenheit"],
                            },
                        },
                        "required": ["location"],
                    },
                },
            }
        ]
        try:
            print(f"MAKING LLM CALL")
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                response_format=response_format,
                tools=tools,
                drop_params=True,
            )
            print(f"RESPONSE={response}")
        except litellm.ContextWindowExceededError:
            pytest.skip("Model exceeded context window")
        assert response is not None

    def test_response_format_type_text(self):
        """
        Test that the response format type text does not lead to tool calls
        """
        from litellm import LlmProviders

        base_completion_call_args = self.get_base_completion_call_args()
        litellm.set_verbose = True

        _, provider, _, _ = litellm.get_llm_provider(
            model=base_completion_call_args["model"]
        )

        provider_config = ProviderConfigManager.get_provider_chat_config(
            base_completion_call_args["model"], LlmProviders(provider)
        )

        print(f"provider_config={provider_config}")

        translated_params = provider_config.map_openai_params(
            non_default_params={"response_format": {"type": "text"}},
            optional_params={},
            model=base_completion_call_args["model"],
            drop_params=False,
        )

        assert "tool_choice" not in translated_params
        assert (
            "tools" not in translated_params
        ), f"Got tools={translated_params['tools']}, expected no tools"

        print(f"translated_params={translated_params}")

    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_pydantic_obj(self):
        litellm._turn_on_debug()
        from pydantic import BaseModel
        from litellm.utils import supports_response_schema

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        class TestModel(BaseModel):
            first_response: str

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_response_schema(base_completion_call_args["model"], None):
            pytest.skip("Model does not support response schema")

        try:
            res = self.completion_function(
                **base_completion_call_args,
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {
                        "role": "user",
                        "content": "What is the capital of France?",
                    },
                ],
                response_format=TestModel,
                timeout=5,
            )
            assert res is not None

            print(res.choices[0].message)

            assert res.choices[0].message.content is not None
            assert res.choices[0].message.tool_calls is None
        except litellm.Timeout:
            pytest.skip("Model took too long to respond")
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_pydantic_obj_nested_obj(self):
        litellm.set_verbose = True
        from pydantic import BaseModel
        from litellm.utils import supports_response_schema

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_nested_pydantic_obj(self):
        from pydantic import BaseModel
        from litellm.utils import supports_response_schema

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        class CalendarEvent(BaseModel):
            name: str
            date: str
            participants: list[str]

        class EventsList(BaseModel):
            events: list[CalendarEvent]

        messages = [
            {"role": "user", "content": "List 5 important events in the XIX century"}
        ]

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_response_schema(base_completion_call_args["model"], None):
            pytest.skip(
                f"Model={base_completion_call_args['model']} does not support response schema"
            )

        try:
            res = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                response_format=EventsList,
                timeout=60,
            )
            assert res is not None

            print(res.choices[0].message)

            assert res.choices[0].message.content is not None
            assert res.choices[0].message.tool_calls is None
        except litellm.Timeout:
            pytest.skip("Model took too long to respond")
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_nested_json_schema(self):
        """
        PROD Test: ensure nested json schema sent to proxy works as expected.
        """
        litellm._turn_on_debug()
        from pydantic import BaseModel
        from litellm.utils import supports_response_schema
        from litellm.llms.base_llm.base_utils import type_to_response_format_param

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        class CalendarEvent(BaseModel):
            name: str
            date: str
            participants: list[str]

        class EventsList(BaseModel):
            events: list[CalendarEvent]

        response_format = type_to_response_format_param(EventsList)

        messages = [
            {"role": "user", "content": "List 5 important events in the XIX century"}
        ]

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_response_schema(base_completion_call_args["model"], None):
            pytest.skip(
                f"Model={base_completion_call_args['model']} does not support response schema"
            )

        try:
            res = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                response_format=response_format,
                timeout=60,
            )
            assert res is not None

            print(res.choices[0].message)

            assert res.choices[0].message.content is not None
            assert res.choices[0].message.tool_calls is None
        except litellm.Timeout:
            pytest.skip("Model took too long to respond")
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

    @pytest.mark.flaky(retries=6, delay=1)
    def test_audio_input(self):
        """
        Test that audio input is supported by the LLM API
        """
        from litellm.utils import supports_audio_input
        litellm._turn_on_debug()
        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_audio_input(base_completion_call_args["model"], None):
            pytest.skip(
                f"Model={base_completion_call_args['model']} does not support audio input"
            )

        url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
        response = httpx.get(url)
        response.raise_for_status()
        wav_data = response.content
        encoded_string = base64.b64encode(wav_data).decode("utf-8")

        completion = self.completion_function(
            **base_completion_call_args,
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "What is in this recording?"},
                        {
                            "type": "input_audio",
                            "input_audio": {"data": encoded_string, "format": "wav"},
                        },
                    ],
                },
            ],
        )

        print(completion.choices[0].message)


            
    @pytest.mark.flaky(retries=6, delay=1)
    def test_json_response_format_stream(self):
        """
        Test that the JSON response format with streaming is supported by the LLM API
        """
        from litellm.utils import supports_response_schema

        base_completion_call_args = self.get_base_completion_call_args()
        litellm.set_verbose = True

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_response_schema(base_completion_call_args["model"], None):
            pytest.skip("Model does not support response schema")

        messages = [
            {
                "role": "system",
                "content": "Your output should be a JSON object with no additional properties.  ",
            },
            {
                "role": "user",
                "content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
            },
        ]

        try:
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                response_format={"type": "json_object"},
                stream=True,
            )
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        print(response)

        content = ""
        for chunk in response:
            content += chunk.choices[0].delta.content or ""

        print(f"content={content}<END>")

        # OpenAI guarantees that the JSON schema is returned in the content
        # relevant issue: https://github.com/BerriAI/litellm/issues/6741
        # we need to assert that the JSON schema was returned in the content, (for Anthropic we were returning it as part of the tool call)
        assert content is not None
        assert len(content) > 0

    @pytest.fixture
    def tool_call_no_arguments(self):
        return {
            "role": "assistant",
            "content": "",
            "tool_calls": [
                {
                    "id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
                    "function": {"name": "Get-FAQ", "arguments": "{}"},
                    "type": "function",
                }
            ],
        }

    @abstractmethod
    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        pass

    @pytest.mark.parametrize("detail", [None, "low", "high"])
    @pytest.mark.parametrize(
        "image_url",
        [
            "http://img1.etsystatic.com/260/0/7813604/il_fullxfull.4226713999_q86e.jpg",
            "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
        ],
    )
    @pytest.mark.flaky(retries=4, delay=2)
    def test_image_url(self, detail, image_url):
        litellm.set_verbose = True
        from litellm.utils import supports_vision

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_vision(base_completion_call_args["model"], None):
            pytest.skip("Model does not support image input")
        elif "http://" in image_url and "fireworks_ai" in base_completion_call_args.get(
            "model"
        ):
            pytest.skip("Model does not support http:// input")

        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "What's in this image?"},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": image_url,
                        },
                    },
                ],
            }
        ]

        if detail is not None:
            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "What's in this image?"},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://www.gstatic.com/webp/gallery/1.webp",
                                "detail": detail,
                            },
                        },
                    ],
                }
            ]
        try:
            response = self.completion_function(
                **base_completion_call_args, messages=messages
            )
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        assert response is not None

    def test_image_url_string(self):
        litellm.set_verbose = True
        from litellm.utils import supports_vision

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_vision(base_completion_call_args["model"], None):
            pytest.skip("Model does not support image input")
        elif "http://" in image_url and "fireworks_ai" in base_completion_call_args.get(
            "model"
        ):
            pytest.skip("Model does not support http:// input")

        image_url_param = image_url
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "What's in this image?"},
                    {
                        "type": "image_url",
                        "image_url": image_url_param,
                    },
                ],
            }
        ]

        try:
            response = self.completion_function(
                **base_completion_call_args, messages=messages
            )
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")

        assert response is not None

    @pytest.mark.flaky(retries=4, delay=1)
    def test_prompt_caching(self):
        litellm.set_verbose = True
        from litellm.utils import supports_prompt_caching

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_prompt_caching(base_completion_call_args["model"], None):
            print("Model does not support prompt caching")
            pytest.skip("Model does not support prompt caching")

        uuid_str = str(uuid.uuid4())
        messages = [
            # System Message
            {
                "role": "system",
                "content": [
                    {
                        "type": "text",
                        "text": "Here is the full text of a complex legal agreement {}".format(
                            uuid_str
                        )
                        * 400,
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            },
            # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            },
            {
                "role": "assistant",
                "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
            },
            # The final turn is marked with cache-control, for continuing in followups.
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "What are the key terms and conditions in this agreement?",
                        "cache_control": {"type": "ephemeral"},
                    }
                ],
            },
        ]

        try:
            ## call 1
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                max_tokens=10,
            )

            initial_cost = response._hidden_params["response_cost"]
            ## call 2
            response = self.completion_function(
                **base_completion_call_args,
                messages=messages,
                max_tokens=10,
            )

            time.sleep(1)

            cached_cost = response._hidden_params["response_cost"]

            assert (
                cached_cost <= initial_cost
            ), "Cached cost={} should be less than initial cost={}".format(
                cached_cost, initial_cost
            )

            _usage_format_tests(response.usage)

            print("response=", response)
            print("response.usage=", response.usage)

            _usage_format_tests(response.usage)

            assert "prompt_tokens_details" in response.usage
            if response.usage.prompt_tokens_details is not None:
                assert (
                    response.usage.prompt_tokens_details.cached_tokens > 0
                ), f"cached_tokens={response.usage.prompt_tokens_details.cached_tokens} should be greater than 0. Got usage={response.usage}"
        except litellm.InternalServerError:
            pass

    @pytest.fixture
    def pdf_messages(self):
        import base64

        import requests

        # URL of the file
        url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"

        response = requests.get(url)
        file_data = response.content

        encoded_file = base64.b64encode(file_data).decode("utf-8")
        url = f"data:application/pdf;base64,{encoded_file}"

        return url
    
    @pytest.mark.flaky(retries=3, delay=1)
    def test_empty_tools(self):
        """
        Related Issue: https://github.com/BerriAI/litellm/issues/9080
        """
        try:
            from litellm import completion, ModelResponse

            litellm.set_verbose = True
            litellm._turn_on_debug()
            from litellm.utils import supports_function_calling

            os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
            litellm.model_cost = litellm.get_model_cost_map(url="")

            base_completion_call_args = self.get_base_completion_call_args()
            if not supports_function_calling(base_completion_call_args["model"], None):
                print("Model does not support function calling")
                pytest.skip("Model does not support function calling")
            
            response = completion(**base_completion_call_args, messages=[{"role": "user", "content": "Hello, how are you?"}], tools=[]) # just make sure call doesn't fail
            print("response: ", response)
            assert response is not None
        except litellm.ContentPolicyViolationError:
            pass
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")
        except litellm.RateLimitError:
            pass
        except Exception as e:
            pytest.fail(f"Error occurred: {e}")

    @pytest.mark.flaky(retries=3, delay=1)
    def test_basic_tool_calling(self):
        try:
            from litellm import completion, ModelResponse

            litellm.set_verbose = True
            litellm._turn_on_debug()
            from litellm.utils import supports_function_calling

            os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
            litellm.model_cost = litellm.get_model_cost_map(url="")

            base_completion_call_args = self.get_base_completion_call_args()
            if not supports_function_calling(base_completion_call_args["model"], None):
                print("Model does not support function calling")
                pytest.skip("Model does not support function calling")

            tools = [
                {
                    "type": "function",
                    "function": {
                        "name": "get_current_weather",
                        "description": "Get the current weather in a given location",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "location": {
                                    "type": "string",
                                    "description": "The city and state, e.g. San Francisco, CA",
                                },
                                "unit": {
                                    "type": "string",
                                    "enum": ["celsius", "fahrenheit"],
                                },
                            },
                            "required": ["location"],
                        },
                    },
                }
            ]
            messages = [
                {
                    "role": "user",
                    "content": "What's the weather like in Boston today in fahrenheit?",
                }
            ]
            request_args = {
                "messages": messages,
                "tools": tools,
            }
            request_args.update(self.get_base_completion_call_args())
            response: ModelResponse = completion(**request_args)  # type: ignore
            print(f"response: {response}")

            assert response is not None

            # if the provider did not return any tool calls do not make a subsequent llm api call
            if response.choices[0].message.content is not None:
                try:
                    json.loads(response.choices[0].message.content)
                    pytest.fail(f"Tool call returned in content instead of tool_calls")
                except Exception as e:
                    print(f"Error: {e}")
                    pass
                if "<thinking>" in response.choices[0].message.content and "</thinking>" in response.choices[0].message.content:
                    pytest.fail("Thinking block returned in content instead of separate reasoning_content")
            if response.choices[0].message.tool_calls is None:
                return
            # Add any assertions here to check the response

            assert isinstance(
                response.choices[0].message.tool_calls[0].function.name, str
            )
            assert isinstance(
                response.choices[0].message.tool_calls[0].function.arguments, str
            )
            assert response.choices[0].finish_reason == "tool_calls", f"finish_reason: {response.choices[0].finish_reason}, expected: tool_calls"
            messages.append(
                response.choices[0].message.model_dump()
            )  # Add assistant tool invokes
            tool_result = (
                '{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
            )
            # Add user submitted tool results in the OpenAI format
            messages.append(
                {
                    "tool_call_id": response.choices[0].message.tool_calls[0].id,
                    "role": "tool",
                    "name": response.choices[0].message.tool_calls[0].function.name,
                    "content": tool_result,
                }
            )
            # In the second response, Claude should deduce answer from tool results
            request_2_args = {
                "messages": messages,
                "tools": tools,
            }
            request_2_args.update(self.get_base_completion_call_args())
            second_response: ModelResponse = completion(**request_2_args)  # type: ignore
            print(f"second response: {second_response}")
            assert second_response is not None

            # either content or tool calls should be present
            assert (
                second_response.choices[0].message.content is not None
                or second_response.choices[0].message.tool_calls is not None
            )
        except litellm.ServiceUnavailableError:
            pytest.skip("Model is overloaded")
        except litellm.InternalServerError:
            pytest.skip("Model is overloaded")
        except litellm.RateLimitError:
            pass
        except Exception as e:
            pytest.fail(f"Error occurred: {e}")

    @pytest.mark.flaky(retries=3, delay=1)
    @pytest.mark.asyncio
    async def test_completion_cost(self):
        from litellm import completion_cost

        litellm._turn_on_debug()

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm.set_verbose = True
        response = await self.async_completion_function(
            **self.get_base_completion_call_args(),
            messages=[{"role": "user", "content": "Hello, how are you?"}],
        )
        print(response._hidden_params["response_cost"])

        assert response._hidden_params["response_cost"] > 0

    @pytest.mark.parametrize("input_type", ["input_audio", "audio_url"])
    @pytest.mark.parametrize("format_specified", [True])
    def test_supports_audio_input(self, input_type, format_specified):
        from litellm.utils import return_raw_request, supports_audio_input
        from litellm.types.utils import CallTypes
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")


        litellm.drop_params = True
        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_audio_input(base_completion_call_args["model"], None):
            print("Model does not support audio input")
            pytest.skip("Model does not support audio input")

        url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
        response = httpx.get(url)
        response.raise_for_status()
        wav_data = response.content
        audio_format = "wav"
        encoded_string = base64.b64encode(wav_data).decode("utf-8")

        audio_content = [
            {
                "type": "text",
                "text": "What is in this recording?"
            }
        ]

        test_file_id = "gs://bucket/file.wav"

        if input_type == "input_audio":
            audio_content.append({
                "type": "input_audio",
                "input_audio": {"data": encoded_string, "format": audio_format},
            })
        elif input_type == "audio_url":
            audio_content.append(
                {
                    "type": "file",
                    "file": {
                        "file_id": test_file_id,
                        "filename": "my-sample-audio-file",
                    }
                }
            )
            
                

        raw_request = return_raw_request(
            endpoint=CallTypes.completion,
            kwargs={
                **base_completion_call_args, 
                "modalities": ["text", "audio"],
                "audio": {"voice": "alloy", "format": audio_format},
                "messages": [
                    {
                        "role": "user",
                        "content": audio_content,
                    },
                ]
            }
        )
        print("raw_request: ", raw_request)

        if input_type == "input_audio":
            assert encoded_string in json.dumps(raw_request), "Audio data not sent to gemini"
        elif input_type == "audio_url":
            assert test_file_id in json.dumps(raw_request), "Audio URL not sent to gemini"


    def test_function_calling_with_tool_response(self):
        from litellm.utils import supports_function_calling
        from litellm import completion
        litellm._turn_on_debug()

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        base_completion_call_args = self.get_base_completion_call_args()
        if not supports_function_calling(base_completion_call_args["model"], None):
            print("Model does not support function calling")
            pytest.skip("Model does not support function calling")
        
        def get_weather(city: str):
            return f"City: {city}, Weather: Sunny with 34 degree Celcius"

        TOOLS = [
            {
                "type": "function",
                "function": {
                    "name": "get_weather",
                    "description": "Get the weather in a city",
                    "parameters": {
                        "$id": "https://some/internal/name",
                        "$schema": "https://json-schema.org/draft-07/schema",
                        "type": "object",
                        "properties": {
                            "city": {
                                "type": "string",
                                "description": "The city to get the weather for",
                            }
                        },
                        "required": ["city"],
                        "additionalProperties": False,
                    },
                    "strict": True,
                },
            }
        ]


        messages = [{ "content": "How is the weather in Mumbai?","role": "user"}]
        response, iteration = "", 0
        while True:
            if response:
                break
            # Create a streaming response with tool calling enabled
            stream = completion(
                **base_completion_call_args,
                messages=messages,
                tools=TOOLS,
                stream=True,
            )

            final_tool_calls = {}
            for chunk in stream:
                delta = chunk.choices[0].delta
                print(delta)
                if delta.content:
                    response += delta.content
                elif delta.tool_calls:
                    for tool_call in chunk.choices[0].delta.tool_calls or []:
                        index = tool_call.index
                        if index not in final_tool_calls:
                            final_tool_calls[index] = tool_call
                        else:
                            final_tool_calls[
                                index
                            ].function.arguments += tool_call.function.arguments
            if final_tool_calls:
                for tool_call in final_tool_calls.values():
                    if tool_call.function.name == "get_weather":
                        city = json.loads(tool_call.function.arguments)["city"]
                        tool_response = get_weather(city)
                        messages.append(
                            {
                                "role": "assistant",
                                "tool_calls": [tool_call],
                                "content": None,
                            }
                        )
                        messages.append(
                            {
                                "role": "tool",
                                "tool_call_id": tool_call.id,
                                "content": tool_response,
                            }
                        )
            iteration += 1
            if iteration > 2:
                print("Something went wrong!")
                break

        print(response)

    def test_reasoning_effort(self):
        """Test that reasoning_effort is passed correctly to the model"""
        from litellm.utils import supports_reasoning
        from litellm import completion

        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        base_completion_call_args = self.get_base_completion_call_args_with_reasoning_model()
        if len(base_completion_call_args) == 0:
            print("base_completion_call_args is empty")
            pytest.skip("Model does not support reasoning")
        if not supports_reasoning(base_completion_call_args["model"], None):
            print("Model does not support reasoning")
            pytest.skip("Model does not support reasoning")

        _, provider, _, _ = litellm.get_llm_provider(
            model=base_completion_call_args["model"]
        )

        ## CHECK PARAM MAPPING 
        optional_params = get_optional_params(
            model=base_completion_call_args["model"],
            custom_llm_provider=provider,
            reasoning_effort="high",
        )
        # either accepts reasoning effort or thinking budget
        assert "reasoning_effort" in optional_params or "4096" in json.dumps(optional_params)

        try:
            litellm._turn_on_debug()
            response = completion(
                **base_completion_call_args,
                reasoning_effort="low",
                messages=[{"role": "user", "content": "Hello!"}],
            )
            print(f"response: {response}")
        except Exception as e:
            pytest.fail(f"Error: {e}")

        

class BaseOSeriesModelsTest(ABC):  # test across azure/openai
    @abstractmethod
    def get_base_completion_call_args(self):
        pass

    @abstractmethod
    def get_client(self) -> OpenAI:
        pass

    def test_reasoning_effort(self):
        """Test that reasoning_effort is passed correctly to the model"""

        from litellm import completion

        client = self.get_client()

        completion_args = self.get_base_completion_call_args()

        with patch.object(
            client.chat.completions.with_raw_response, "create"
        ) as mock_client:
            try:
                completion(
                    **completion_args,
                    reasoning_effort="low",
                    messages=[{"role": "user", "content": "Hello!"}],
                    client=client,
                )
            except Exception as e:
                print(f"Error: {e}")

            mock_client.assert_called_once()
            request_body = mock_client.call_args.kwargs
            print("request_body: ", request_body)
            assert request_body["reasoning_effort"] == "low"

    def test_developer_role_translation(self):
        """Test that developer role is translated correctly to system role for non-OpenAI providers"""
        from litellm import completion

        client = self.get_client()

        completion_args = self.get_base_completion_call_args()

        with patch.object(
            client.chat.completions.with_raw_response, "create"
        ) as mock_client:
            try:
                completion(
                    **completion_args,
                    reasoning_effort="low",
                    messages=[
                        {"role": "developer", "content": "Be a good bot!"},
                        {"role": "user", "content": "Hello!"},
                    ],
                    client=client,
                )
            except Exception as e:
                print(f"Error: {e}")

            mock_client.assert_called_once()
            request_body = mock_client.call_args.kwargs
            print("request_body: ", request_body)
            assert (
                request_body["messages"][0]["role"] == "developer"
            ), "Got={} instead of system".format(request_body["messages"][0]["role"])
            assert request_body["messages"][0]["content"] == "Be a good bot!"

    def test_completion_o_series_models_temperature(self):
        """
        Test that temperature is not passed to O-series models
        """
        try:
            from litellm import completion

            client = self.get_client()

            completion_args = self.get_base_completion_call_args()

            with patch.object(
                client.chat.completions.with_raw_response, "create"
            ) as mock_client:
                try:
                    completion(
                        **completion_args,
                        temperature=0.0,
                        messages=[
                            {
                                "role": "user",
                                "content": "Hello, world!",
                            }
                        ],
                        drop_params=True,
                        client=client,
                    )
                except Exception as e:
                    print(f"Error: {e}")

            mock_client.assert_called_once()
            request_body = mock_client.call_args.kwargs
            print("request_body: ", request_body)
            assert (
                "temperature" not in request_body
            ), "temperature should not be in the request body"
        except Exception as e:
            pytest.fail(f"Error occurred: {e}")


class BaseAnthropicChatTest(ABC):
    """
    Ensures consistent result across anthropic model usage
    """

    @abstractmethod
    def get_base_completion_call_args(self) -> dict:
        """Must return the base completion call args"""
        pass

    @abstractmethod
    def get_base_completion_call_args_with_thinking(self) -> dict:
        """Must return the base completion call args"""
        pass

    @property
    def completion_function(self):
        return litellm.completion

    def test_anthropic_response_format_streaming_vs_non_streaming(self):
        args = {
            "messages": [
                {
                    "content": "Your goal is to summarize the previous agent's thinking process into short descriptions to let user better understand the research progress. If no information is available, just say generic phrase like 'Doing some research...' with the given output format. Make sure to adhere to the output format no matter what, even if you don't have any information or you are not allowed to respond to the given input information (then just say generic phrase like 'Doing some research...').",
                    "role": "system",
                },
                {
                    "role": "user",
                    "content": "Here is the input data (previous agent's output): \n\n Let's try to refine our search further, focusing more on the technical aspects of home automation and home energy system management:",
                },
            ],
            "response_format": {
                "type": "json_schema",
                "json_schema": {
                    "name": "final_output",
                    "strict": True,
                    "schema": {
                        "description": 'Progress report for the thinking process\n\nThis model represents a snapshot of the agent\'s current progress during\nthe thinking process, providing a brief description of the current activity.\n\nAttributes:\n    agent_doing: Brief description of what the agent is currently doing.\n                Should be kept under 10 words. Example: "Learning about home automation"',
                        "properties": {
                            "agent_doing": {"title": "Agent Doing", "type": "string"}
                        },
                        "required": ["agent_doing"],
                        "title": "ThinkingStep",
                        "type": "object",
                        "additionalProperties": False,
                    },
                },
            },
        }

        base_completion_call_args = self.get_base_completion_call_args()

        response = self.completion_function(
            **base_completion_call_args, **args, stream=True
        )

        chunks = []
        for chunk in response:
            print(f"chunk: {chunk}")
            chunks.append(chunk)

        print(f"chunks: {chunks}")
        built_response = stream_chunk_builder(chunks=chunks)

        non_stream_response = self.completion_function(
            **base_completion_call_args, **args, stream=False
        )

        print("built_response.choices[0].message.content", built_response.choices[0].message.content)
        print("non_stream_response.choices[0].message.content", non_stream_response.choices[0].message.content)
        assert (
            json.loads(built_response.choices[0].message.content).keys()
            == json.loads(non_stream_response.choices[0].message.content).keys()
        ), f"Got={json.loads(built_response.choices[0].message.content)}, Expected={json.loads(non_stream_response.choices[0].message.content)}"

    def test_completion_thinking_with_response_format(self):
        from pydantic import BaseModel
        litellm._turn_on_debug()

        class RFormat(BaseModel):
            question: str
            answer: str

        base_completion_call_args = self.get_base_completion_call_args_with_thinking()

        messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
        response = self.completion_function(
            **base_completion_call_args,
            messages=messages,
            response_format=RFormat,
        )

        print(response)
    
    def test_completion_thinking_with_max_tokens(self):
        from pydantic import BaseModel
        litellm._turn_on_debug()

        base_completion_call_args = self.get_base_completion_call_args_with_thinking()

        messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
        response = self.completion_function(
            **base_completion_call_args,
            messages=messages,
            max_completion_tokens=20000,
        )

        print(response)
    
        
    def test_completion_thinking_without_max_tokens(self):
        from pydantic import BaseModel
        litellm._turn_on_debug()

        base_completion_call_args = self.get_base_completion_call_args_with_thinking()

        messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
        response = self.completion_function(
            **base_completion_call_args,
            messages=messages,
        )

        print(response)

    def test_completion_with_thinking_basic(self):
        litellm._turn_on_debug()
        base_completion_call_args = self.get_base_completion_call_args_with_thinking()

        messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
        response = self.completion_function(
            **base_completion_call_args,
            messages=messages,
        )

        print(f"response: {response}")
        assert response.choices[0].message.reasoning_content is not None
        assert isinstance(response.choices[0].message.reasoning_content, str)
        assert response.choices[0].message.thinking_blocks is not None
        assert isinstance(response.choices[0].message.thinking_blocks, list)
        assert len(response.choices[0].message.thinking_blocks) > 0

        assert response.choices[0].message.thinking_blocks[0]["signature"] is not None

    def test_anthropic_thinking_output_stream(self):
        # litellm.set_verbose = True
        try:
            base_completion_call_args = self.get_base_completion_call_args_with_thinking()
            resp = litellm.completion(
                **base_completion_call_args,
                messages=[{"role": "user", "content": "Tell me a joke."}],
                stream=True,
                timeout=10,
            )

            reasoning_content_exists = False
            signature_block_exists = False
            tool_call_exists = False
            for chunk in resp:
                print(f"chunk 2: {chunk}")
                if chunk.choices[0].delta.tool_calls:
                    tool_call_exists = True
                if (
                    hasattr(chunk.choices[0].delta, "thinking_blocks")
                    and chunk.choices[0].delta.thinking_blocks is not None
                    and chunk.choices[0].delta.reasoning_content is not None
                    and isinstance(chunk.choices[0].delta.thinking_blocks, list)
                    and len(chunk.choices[0].delta.thinking_blocks) > 0
                    and isinstance(chunk.choices[0].delta.reasoning_content, str)
                ):
                    reasoning_content_exists = True
                    print(chunk.choices[0].delta.thinking_blocks[0])
                    if chunk.choices[0].delta.thinking_blocks[0].get("signature"):
                        signature_block_exists = True
            assert not tool_call_exists
            assert reasoning_content_exists
            assert signature_block_exists
        except litellm.Timeout:
            pytest.skip("Model is timing out")

    def test_anthropic_reasoning_effort_thinking_translation(self):
        base_completion_call_args = self.get_base_completion_call_args_with_thinking()
        _, provider, _, _ = litellm.get_llm_provider(
            model=base_completion_call_args["model"]
        )

        optional_params = get_optional_params(
            model=base_completion_call_args.get("model"),
            custom_llm_provider=provider,
            reasoning_effort="high",
        )
        assert optional_params["thinking"] == {"type": "enabled", "budget_tokens": 4096}

        assert "reasoning_effort" not in optional_params


class BaseReasoningLLMTests(ABC):
    """
    Base class for testing reasoning llms

    - test that the responses contain reasoning_content
    - test that the usage contains reasoning_tokens
    """
    @abstractmethod
    def get_base_completion_call_args(self) -> dict:
        """Must return the base completion call args"""
        pass
    
    @property
    def completion_function(self):
        return litellm.completion


    def test_non_streaming_reasoning_effort(self):
        """
        Base test for non-streaming reasoning effort

        - Assert that `reasoning_content` is not None from response message
        - Assert that `reasoning_tokens` is greater than 0 from usage
        """
        litellm._turn_on_debug()
        base_completion_call_args = self.get_base_completion_call_args()
        response: ModelResponse = self.completion_function(**base_completion_call_args, reasoning_effort="low")
        
        # user gets `reasoning_content` in the response message
        assert response.choices[0].message.reasoning_content is not None
        assert isinstance(response.choices[0].message.reasoning_content, str)

        # user get `reasoning_tokens`
        assert response.usage.completion_tokens_details.reasoning_tokens > 0
    

    def test_streaming_reasoning_effort(self):
        """
        Base test for streaming reasoning effort

        - Assert that `reasoning_content` is not None from streaming response
        - Assert that `reasoning_tokens` is greater than 0 from usage
        """
        #litellm._turn_on_debug()
        base_completion_call_args = self.get_base_completion_call_args()
        response: CustomStreamWrapper = self.completion_function(
            **base_completion_call_args,
            reasoning_effort="low",
            stream=True,
            stream_options={
                "include_usage": True
            }
        )
        
        resoning_content: str = ""
        usage: Usage = None
        for chunk in response:
            print(chunk)
            if hasattr(chunk.choices[0].delta, "reasoning_content"):
                resoning_content += chunk.choices[0].delta.reasoning_content
            if hasattr(chunk, "usage"):
                usage = chunk.usage

        assert resoning_content is not None
        assert len(resoning_content) > 0

        print(f"usage: {usage}")
        assert usage.completion_tokens_details.reasoning_tokens > 0