Spaces:
Configuration error
Configuration error
File size: 20,349 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import sys
import os
sys.path.insert(
0, os.path.abspath("../../")
) # Adds the parent directory to the system path
import pytest
from litellm.llms.azure.common_utils import process_azure_headers
from httpx import Headers
from base_embedding_unit_tests import BaseLLMEmbeddingTest
def test_process_azure_headers_empty():
result = process_azure_headers({})
assert result == {}, "Expected empty dictionary for no input"
def test_process_azure_headers_with_all_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"x-ratelimit-limit-tokens": "10000",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-tokens": "10000",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for all Azure headers"
def test_process_azure_headers_with_partial_headers():
input_headers = Headers(
{
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"other-header": "value",
}
)
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-tokens": "9000",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-tokens": "9000",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for partial Azure headers"
def test_process_azure_headers_with_no_matching_headers():
input_headers = Headers(
{"unrelated-header-1": "value1", "unrelated-header-2": "value2"}
)
expected_output = {
"llm_provider-unrelated-header-1": "value1",
"llm_provider-unrelated-header-2": "value2",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for non-matching headers"
def test_process_azure_headers_with_dict_input():
input_headers = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"other-header": "value",
}
expected_output = {
"x-ratelimit-limit-requests": "100",
"x-ratelimit-remaining-requests": "90",
"llm_provider-x-ratelimit-limit-requests": "100",
"llm_provider-x-ratelimit-remaining-requests": "90",
"llm_provider-other-header": "value",
}
result = process_azure_headers(input_headers)
assert result == expected_output, "Unexpected output for dict input"
from httpx import Client
from unittest.mock import MagicMock, patch
from openai import AzureOpenAI
import litellm
from litellm import completion
import os
@pytest.mark.parametrize(
"input, call_type",
[
({"messages": [{"role": "user", "content": "Hello world"}]}, "completion"),
({"input": "Hello world"}, "embedding"),
({"prompt": "Hello world"}, "image_generation"),
],
)
@pytest.mark.parametrize(
"header_value",
[
"headers",
"extra_headers",
],
)
def test_azure_extra_headers(input, call_type, header_value):
from litellm import embedding, image_generation
http_client = Client()
messages = [{"role": "user", "content": "Hello world"}]
with patch.object(http_client, "send", new=MagicMock()) as mock_client:
litellm.client_session = http_client
try:
if call_type == "completion":
func = completion
elif call_type == "embedding":
func = embedding
elif call_type == "image_generation":
func = image_generation
data = {
"model": "azure/chatgpt-v-3",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com",
"api_version": "2023-07-01-preview",
"api_key": "my-azure-api-key",
header_value: {
"Authorization": "my-bad-key",
"Ocp-Apim-Subscription-Key": "hello-world-testing",
},
**input,
}
response = func(**data)
print(response)
except Exception as e:
print(e)
mock_client.assert_called()
print(f"mock_client.call_args: {mock_client.call_args}")
request = mock_client.call_args[0][0]
print(request.method) # This will print 'POST'
print(request.url) # This will print the full URL
print(request.headers) # This will print the full URL
auth_header = request.headers.get("Authorization")
apim_key = request.headers.get("Ocp-Apim-Subscription-Key")
print(auth_header)
assert auth_header == "my-bad-key"
assert apim_key == "hello-world-testing"
@pytest.mark.parametrize(
"api_base, model, expected_endpoint",
[
(
"https://my-endpoint-sweden-berri992.openai.azure.com",
"dall-e-3-test",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/dall-e-3-test/images/generations?api-version=2023-12-01-preview",
),
(
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment",
"dall-e-3",
"https://my-endpoint-sweden-berri992.openai.azure.com/openai/deployments/my-custom-deployment/images/generations?api-version=2023-12-01-preview",
),
],
)
def test_process_azure_endpoint_url(api_base, model, expected_endpoint):
from litellm.llms.azure.azure import AzureChatCompletion
azure_chat_completion = AzureChatCompletion()
input_args = {
"azure_client_params": {
"api_version": "2023-12-01-preview",
"azure_endpoint": api_base,
"azure_deployment": model,
"max_retries": 2,
"timeout": 600,
"api_key": "f28ab7b695af4154bc53498e5bdccb07",
},
"model": model,
}
result = azure_chat_completion.create_azure_base_url(**input_args)
assert result == expected_endpoint, "Unexpected endpoint"
class TestAzureEmbedding(BaseLLMEmbeddingTest):
def get_base_embedding_call_args(self) -> dict:
return {
"model": "azure/azure-embedding-model",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
}
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.AZURE
@patch("azure.identity.UsernamePasswordCredential")
@patch("azure.identity.get_bearer_token_provider")
def test_get_azure_ad_token_from_username_password(
mock_get_bearer_token_provider, mock_credential
):
from litellm.llms.azure.common_utils import (
get_azure_ad_token_from_username_password,
)
# Test inputs
client_id = "test-client-id"
username = "test-username"
password = "test-password"
# Mock the token provider function
mock_token_provider = lambda: "mock-token"
mock_get_bearer_token_provider.return_value = mock_token_provider
# Call the function
result = get_azure_ad_token_from_username_password(
client_id=client_id, azure_username=username, azure_password=password
)
# Verify UsernamePasswordCredential was called with correct arguments
mock_credential.assert_called_once_with(
client_id=client_id, username=username, password=password
)
# Verify get_bearer_token_provider was called
mock_get_bearer_token_provider.assert_called_once_with(
mock_credential.return_value, "https://cognitiveservices.azure.com/.default"
)
# Verify the result is the mock token provider
assert result == mock_token_provider
def test_azure_openai_gpt_4o_naming(monkeypatch):
from openai import AzureOpenAI
from pydantic import BaseModel, Field
monkeypatch.setenv("AZURE_API_VERSION", "2024-10-21")
client = AzureOpenAI(
api_key="test-api-key",
base_url="https://my-endpoint-sweden-berri992.openai.azure.com",
api_version="2023-12-01-preview",
)
class ResponseFormat(BaseModel):
number: str = Field(description="total number of days in a week")
days: list[str] = Field(description="name of days in a week")
with patch.object(client.chat.completions.with_raw_response, "create") as mock_post:
try:
completion(
model="azure/gpt4o",
messages=[{"role": "user", "content": "Hello world"}],
response_format=ResponseFormat,
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
assert "tool_calls" not in mock_post.call_args.kwargs
@pytest.mark.parametrize(
"api_version",
[
"2024-10-21",
# "2024-02-15-preview",
],
)
def test_azure_gpt_4o_with_tool_call_and_response_format(api_version):
from litellm import completion
from typing import Optional
from pydantic import BaseModel
import litellm
from openai import AzureOpenAI
client = AzureOpenAI(
api_key="fake-key",
base_url="https://fake-azure.openai.azure.com",
api_version=api_version,
)
class InvestigationOutput(BaseModel):
alert_explanation: Optional[str] = None
investigation: Optional[str] = None
conclusions_and_possible_root_causes: Optional[str] = None
next_steps: Optional[str] = None
related_logs: Optional[str] = None
app_or_infra: Optional[str] = None
external_links: Optional[str] = None
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "Returns the current date and time",
"strict": True,
"parameters": {
"properties": {
"timezone": {
"type": "string",
"description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')",
}
},
"required": ["timezone"],
"type": "object",
"additionalProperties": False,
},
},
}
]
with patch.object(client.chat.completions.with_raw_response, "create") as mock_post:
response = litellm.completion(
model="azure/gpt-4o-new-test",
messages=[
{
"role": "system",
"content": "You are a tool-calling AI assist provided with common devops and IT tools that you can use to troubleshoot problems or answer questions.\nWhenever possible you MUST first use tools to investigate then answer the question.",
},
{
"role": "user",
"content": "What is the current date and time in NYC?",
},
],
drop_params=True,
temperature=0.00000001,
tools=tools,
tool_choice="auto",
response_format=InvestigationOutput, # commenting this line will cause the output to be correct
api_version=api_version,
client=client,
)
mock_post.assert_called_once()
if api_version == "2024-10-21":
assert "response_format" in mock_post.call_args.kwargs
else:
assert "response_format" not in mock_post.call_args.kwargs
def test_map_openai_params():
"""
Ensure response_format does not override tools
"""
from litellm.llms.azure.chat.gpt_transformation import AzureOpenAIConfig
azure_openai_config = AzureOpenAIConfig()
tools = [
{
"type": "function",
"function": {
"name": "get_current_time",
"description": "Returns the current date and time",
"strict": True,
"parameters": {
"properties": {
"timezone": {
"type": "string",
"description": "The timezone to get the current time for (e.g., 'UTC', 'America/New_York')",
}
},
"required": ["timezone"],
"type": "object",
"additionalProperties": False,
},
},
}
]
received_args = {
"non_default_params": {
"temperature": 1e-08,
"response_format": {
"type": "json_schema",
"json_schema": {
"schema": {
"properties": {
"alert_explanation": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Alert Explanation",
},
"investigation": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Investigation",
},
"conclusions_and_possible_root_causes": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Conclusions And Possible Root Causes",
},
"next_steps": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Next Steps",
},
"related_logs": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "Related Logs",
},
"app_or_infra": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "App Or Infra",
},
"external_links": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"title": "External Links",
},
},
"title": "InvestigationOutput",
"type": "object",
"additionalProperties": False,
"required": [
"alert_explanation",
"investigation",
"conclusions_and_possible_root_causes",
"next_steps",
"related_logs",
"app_or_infra",
"external_links",
],
},
"name": "InvestigationOutput",
"strict": True,
},
},
"tools": tools,
"tool_choice": "auto",
},
"optional_params": {},
"model": "gpt-4o",
"drop_params": True,
"api_version": "2024-02-15-preview",
}
optional_params = azure_openai_config.map_openai_params(**received_args)
assert "tools" in optional_params
assert len(optional_params["tools"]) > 1
@pytest.mark.parametrize("max_retries", [0, 4])
@pytest.mark.parametrize("stream", [True, False])
@patch(
"litellm.main.azure_chat_completions.make_sync_azure_openai_chat_completion_request"
)
def test_azure_max_retries_0(
mock_make_sync_azure_openai_chat_completion_request, max_retries, stream
):
from litellm import completion
try:
completion(
model="azure/gpt-4o-new-test",
messages=[{"role": "user", "content": "Hello world"}],
max_retries=max_retries,
stream=stream,
)
except Exception as e:
print(e)
mock_make_sync_azure_openai_chat_completion_request.assert_called_once()
assert (
mock_make_sync_azure_openai_chat_completion_request.call_args.kwargs[
"azure_client"
].max_retries
== max_retries
)
@pytest.mark.parametrize("max_retries", [0, 4])
@pytest.mark.parametrize("stream", [True, False])
@patch("litellm.main.azure_chat_completions.make_azure_openai_chat_completion_request")
@pytest.mark.asyncio
async def test_async_azure_max_retries_0(
make_azure_openai_chat_completion_request, max_retries, stream
):
from litellm import acompletion
try:
await acompletion(
model="azure/gpt-4o-new-test",
messages=[{"role": "user", "content": "Hello world"}],
max_retries=max_retries,
stream=stream,
)
except Exception as e:
print(e)
make_azure_openai_chat_completion_request.assert_called_once()
assert (
make_azure_openai_chat_completion_request.call_args.kwargs[
"azure_client"
].max_retries
== max_retries
)
@pytest.mark.parametrize("max_retries", [0, 4])
@pytest.mark.parametrize("stream", [True, False])
@pytest.mark.parametrize("sync_mode", [True, False])
@patch("litellm.llms.azure.common_utils.select_azure_base_url_or_endpoint")
@pytest.mark.asyncio
async def test_azure_instruct(
mock_select_azure_base_url_or_endpoint, max_retries, stream, sync_mode
):
from litellm import completion, acompletion
args = {
"model": "azure_text/instruct-model",
"messages": [
{"role": "user", "content": "What is the weather like in Boston?"}
],
"max_tokens": 10,
"max_retries": max_retries,
}
try:
if sync_mode:
completion(**args)
else:
await acompletion(**args)
except Exception:
pass
mock_select_azure_base_url_or_endpoint.assert_called_once()
assert (
mock_select_azure_base_url_or_endpoint.call_args.kwargs["azure_client_params"][
"max_retries"
]
== max_retries
)
@pytest.mark.parametrize("max_retries", [0, 4])
@pytest.mark.parametrize("sync_mode", [True, False])
@patch("litellm.llms.azure.common_utils.select_azure_base_url_or_endpoint")
@pytest.mark.asyncio
async def test_azure_embedding_max_retries_0(
mock_select_azure_base_url_or_endpoint, max_retries, sync_mode
):
from litellm import aembedding, embedding
args = {
"model": "azure/azure-embedding-model",
"input": "Hello world",
"max_retries": max_retries,
}
try:
if sync_mode:
embedding(**args)
else:
await aembedding(**args)
except Exception as e:
print(e)
mock_select_azure_base_url_or_endpoint.assert_called_once()
print(
"mock_select_azure_base_url_or_endpoint.call_args.kwargs",
mock_select_azure_base_url_or_endpoint.call_args.kwargs,
)
assert (
mock_select_azure_base_url_or_endpoint.call_args.kwargs["azure_client_params"][
"max_retries"
]
== max_retries
)
def test_azure_safety_result():
"""Bubble up safety result from Azure OpenAI"""
from litellm import completion
litellm._turn_on_debug()
response = completion(
model="azure/gpt-4o-new-test",
messages=[{"role": "user", "content": "Hello world"}],
)
print(f"response: {response}")
assert response.choices[0].message.content is not None
assert response.choices[0].provider_specific_fields is not None |