File size: 177,008 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
"""
Tests Bedrock Completion + Rerank endpoints
"""

# @pytest.mark.skip(reason="AWS Suspended Account")
import os
import sys
import traceback

from dotenv import load_dotenv

import litellm.types

load_dotenv()
import io
import os
import json

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path
from unittest.mock import AsyncMock, Mock, patch

import pytest

import litellm
from litellm import (
    ModelResponse,
    RateLimitError,
    Timeout,
    completion,
    completion_cost,
    embedding,
)
from litellm.llms.bedrock.chat import BedrockLLM
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.litellm_core_utils.prompt_templates.factory import _bedrock_tools_pt
from base_llm_unit_tests import BaseLLMChatTest, BaseAnthropicChatTest
from base_rerank_unit_tests import BaseLLMRerankTest
from base_embedding_unit_tests import BaseLLMEmbeddingTest

# litellm.num_retries = 3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]


@pytest.fixture(autouse=True)
def reset_callbacks():
    print("\npytest fixture - resetting callbacks")
    litellm.success_callback = []
    litellm._async_success_callback = []
    litellm.failure_callback = []
    litellm.callbacks = []


def test_completion_bedrock_claude_completion_auth():
    print("calling bedrock claude completion params auth")
    import os

    aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
    aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
    aws_region_name = os.environ["AWS_REGION_NAME"]

    os.environ.pop("AWS_ACCESS_KEY_ID", None)
    os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
    os.environ.pop("AWS_REGION_NAME", None)

    try:
        response = completion(
            model="bedrock/anthropic.claude-instant-v1",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_region_name=aws_region_name,
        )
        # Add any assertions here to check the response
        print(response)

        os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
        os.environ["AWS_REGION_NAME"] = aws_region_name
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


# test_completion_bedrock_claude_completion_auth()


@pytest.mark.parametrize("streaming", [True, False])
def test_completion_bedrock_guardrails(streaming):
    import os

    litellm.set_verbose = True
    import logging

    from litellm._logging import verbose_logger

    # verbose_logger.setLevel(logging.DEBUG)
    try:
        if streaming is False:
            response = completion(
                model="anthropic.claude-v2",
                messages=[
                    {
                        "content": "where do i buy coffee from? ",
                        "role": "user",
                    }
                ],
                max_tokens=10,
                guardrailConfig={
                    "guardrailIdentifier": "ff6ujrregl1q",
                    "guardrailVersion": "DRAFT",
                    "trace": "enabled",
                },
            )
            # Add any assertions here to check the response
            print(response)
            assert (
                "Sorry, the model cannot answer this question. coffee guardrail applied"
                in response.choices[0].message.content
            )

            assert "trace" in response
            assert response.trace is not None

            print("TRACE=", response.trace)
        else:
            litellm.set_verbose = True
            response = completion(
                model="anthropic.claude-v2",
                messages=[
                    {
                        "content": "where do i buy coffee from? ",
                        "role": "user",
                    }
                ],
                stream=True,
                max_tokens=10,
                guardrailConfig={
                    "guardrailIdentifier": "ff6ujrregl1q",
                    "guardrailVersion": "DRAFT",
                    "trace": "enabled",
                },
            )

            saw_trace = False

            for chunk in response:
                if "trace" in chunk:
                    saw_trace = True
                print(chunk)

            assert (
                saw_trace is True
            ), "Did not see trace in response even when trace=enabled sent in the guardrailConfig"

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


def test_completion_bedrock_claude_2_1_completion_auth():
    print("calling bedrock claude 2.1 completion params auth")
    import os

    aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
    aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
    aws_region_name = os.environ["AWS_REGION_NAME"]

    os.environ.pop("AWS_ACCESS_KEY_ID", None)
    os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
    os.environ.pop("AWS_REGION_NAME", None)
    try:
        response = completion(
            model="bedrock/anthropic.claude-v2:1",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_region_name=aws_region_name,
        )
        # Add any assertions here to check the response
        print(response)

        os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
        os.environ["AWS_REGION_NAME"] = aws_region_name
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


# test_completion_bedrock_claude_2_1_completion_auth()


def test_completion_bedrock_claude_external_client_auth():
    print("\ncalling bedrock claude external client auth")
    import os

    aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
    aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
    aws_region_name = os.environ["AWS_REGION_NAME"]

    os.environ.pop("AWS_ACCESS_KEY_ID", None)
    os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
    os.environ.pop("AWS_REGION_NAME", None)

    try:
        import boto3

        litellm.set_verbose = True

        bedrock = boto3.client(
            service_name="bedrock-runtime",
            region_name=aws_region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
        )

        response = completion(
            model="bedrock/anthropic.claude-instant-v1",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_bedrock_client=bedrock,
        )
        # Add any assertions here to check the response
        print(response)

        os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
        os.environ["AWS_REGION_NAME"] = aws_region_name
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


# test_completion_bedrock_claude_external_client_auth()


@pytest.mark.skip(reason="Expired token, need to renew")
def test_completion_bedrock_claude_sts_client_auth():
    print("\ncalling bedrock claude external client auth")
    import os

    aws_access_key_id = os.environ["AWS_TEMP_ACCESS_KEY_ID"]
    aws_secret_access_key = os.environ["AWS_TEMP_SECRET_ACCESS_KEY"]
    aws_region_name = os.environ["AWS_REGION_NAME"]
    aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]

    try:
        import boto3

        litellm.set_verbose = True

        response = completion(
            model="bedrock/anthropic.claude-instant-v1",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_region_name=aws_region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )

        response = embedding(
            model="cohere.embed-multilingual-v3",
            input=["hello world"],
            aws_region_name="us-east-1",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )

        response = completion(
            model="gpt-3.5-turbo",
            messages=messages,
            aws_region_name="us-east-1",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )
        # Add any assertions here to check the response
        print(response)
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.fixture()
def bedrock_session_token_creds():
    print("\ncalling oidc auto to get aws_session_token credentials")
    import os

    aws_region_name = os.environ["AWS_REGION_NAME"]
    aws_session_token = os.environ.get("AWS_SESSION_TOKEN")

    bllm = BedrockLLM()
    if aws_session_token is not None:
        # For local testing
        creds = bllm.get_credentials(
            aws_region_name=aws_region_name,
            aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
            aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
            aws_session_token=aws_session_token,
        )
    else:
        # For circle-ci testing
        # aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
        # TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
        aws_role_name = (
            "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
        )
        aws_web_identity_token = "oidc/circleci_v2/"

        creds = bllm.get_credentials(
            aws_region_name=aws_region_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )
    return creds


def process_stream_response(res, messages):
    import types

    if isinstance(res, litellm.utils.CustomStreamWrapper):
        chunks = []
        for part in res:
            chunks.append(part)
            text = part.choices[0].delta.content or ""
            print(text, end="")
        res = litellm.stream_chunk_builder(chunks, messages=messages)
    else:
        raise ValueError("Response object is not a streaming response")

    return res


@pytest.mark.skipif(
    os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
    reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_session_token(bedrock_session_token_creds):
    print("\ncalling bedrock claude with aws_session_token auth")

    import os

    aws_region_name = os.environ["AWS_REGION_NAME"]
    aws_access_key_id = bedrock_session_token_creds.access_key
    aws_secret_access_key = bedrock_session_token_creds.secret_key
    aws_session_token = bedrock_session_token_creds.token

    try:
        litellm.set_verbose = True

        response_1 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_region_name=aws_region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
        )
        print(response_1)
        assert len(response_1.choices) > 0
        assert len(response_1.choices[0].message.content) > 0

        # This second call is to verify that the cache isn't breaking anything
        response_2 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=5,
            temperature=0.2,
            aws_region_name=aws_region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
        )
        print(response_2)
        assert len(response_2.choices) > 0
        assert len(response_2.choices[0].message.content) > 0

        # This third call is to verify that the cache isn't used for a different region
        response_3 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=6,
            temperature=0.3,
            aws_region_name="us-east-1",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
        )
        print(response_3)
        assert len(response_3.choices) > 0
        assert len(response_3.choices[0].message.content) > 0

        # This fourth call is to verify streaming api works
        response_4 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=6,
            temperature=0.3,
            aws_region_name="us-east-1",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            stream=True,
        )
        response_4 = process_stream_response(response_4, messages)
        print(response_4)
        assert len(response_4.choices) > 0
        assert len(response_4.choices[0].message.content) > 0

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.skipif(
    os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
    reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_bedrock_client(bedrock_session_token_creds):
    print("\ncalling bedrock claude with aws_session_token auth")

    import os

    import boto3
    from botocore.client import Config

    aws_region_name = os.environ["AWS_REGION_NAME"]
    aws_access_key_id = bedrock_session_token_creds.access_key
    aws_secret_access_key = bedrock_session_token_creds.secret_key
    aws_session_token = bedrock_session_token_creds.token

    aws_bedrock_client_west = boto3.client(
        service_name="bedrock-runtime",
        region_name=aws_region_name,
        aws_access_key_id=aws_access_key_id,
        aws_secret_access_key=aws_secret_access_key,
        aws_session_token=aws_session_token,
        config=Config(read_timeout=600),
    )

    try:
        litellm.set_verbose = True

        response_1 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_bedrock_client=aws_bedrock_client_west,
        )
        print(response_1)
        assert len(response_1.choices) > 0
        assert len(response_1.choices[0].message.content) > 0

        # This second call is to verify that the cache isn't breaking anything
        response_2 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=5,
            temperature=0.2,
            aws_bedrock_client=aws_bedrock_client_west,
        )
        print(response_2)
        assert len(response_2.choices) > 0
        assert len(response_2.choices[0].message.content) > 0

        # This third call is to verify that the cache isn't used for a different region
        aws_bedrock_client_east = boto3.client(
            service_name="bedrock-runtime",
            region_name="us-east-1",
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            aws_session_token=aws_session_token,
            config=Config(read_timeout=600),
        )

        response_3 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=6,
            temperature=0.3,
            aws_bedrock_client=aws_bedrock_client_east,
        )
        print(response_3)
        assert len(response_3.choices) > 0
        assert len(response_3.choices[0].message.content) > 0

        # This fourth call is to verify streaming api works
        response_4 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=6,
            temperature=0.3,
            aws_bedrock_client=aws_bedrock_client_east,
            stream=True,
        )
        response_4 = process_stream_response(response_4, messages)
        print(response_4)
        assert len(response_4.choices) > 0
        assert len(response_4.choices[0].message.content) > 0

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


# test_completion_bedrock_claude_sts_client_auth()


@pytest.mark.skipif(
    os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
    reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_sts_oidc_auth():
    print("\ncalling bedrock claude with oidc auth")
    import os

    aws_web_identity_token = "oidc/circleci_v2/"
    aws_region_name = os.environ["AWS_REGION_NAME"]
    # aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
    # TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
    aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"

    try:
        litellm.set_verbose = True

        response_1 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_region_name=aws_region_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )
        print(response_1)
        assert len(response_1.choices) > 0
        assert len(response_1.choices[0].message.content) > 0

        # This second call is to verify that the cache isn't breaking anything
        response_2 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=5,
            temperature=0.2,
            aws_region_name=aws_region_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )
        print(response_2)
        assert len(response_2.choices) > 0
        assert len(response_2.choices[0].message.content) > 0

        # This third call is to verify that the cache isn't used for a different region
        response_3 = completion(
            model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
            messages=messages,
            max_tokens=6,
            temperature=0.3,
            aws_region_name="us-east-1",
            aws_web_identity_token=aws_web_identity_token,
            aws_role_name=aws_role_name,
            aws_session_name="my-test-session",
        )
        print(response_3)
        assert len(response_3.choices) > 0
        assert len(response_3.choices[0].message.content) > 0

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.skipif(
    os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
    reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_httpx_command_r_sts_oidc_auth():
    print("\ncalling bedrock httpx command r with oidc auth")
    import os

    aws_web_identity_token = "oidc/circleci_v2/"
    aws_region_name = "us-west-2"
    # aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
    # TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
    aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"

    try:
        litellm.set_verbose = True

        response = completion(
            model="bedrock/cohere.command-r-v1:0",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
            aws_region_name=aws_region_name,
            aws_web_identity_token=aws_web_identity_token,
            aws_role_name=aws_role_name,
            aws_session_name="cross-region-test",
            aws_sts_endpoint="https://sts-fips.us-east-2.amazonaws.com",
            aws_bedrock_runtime_endpoint="https://bedrock-runtime-fips.us-west-2.amazonaws.com",
        )
        # Add any assertions here to check the response
        print(response)
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.parametrize(
    "image_url",
    [
        "",
        "https://avatars.githubusercontent.com/u/29436595?v=",
    ],
)
def test_bedrock_claude_3(image_url):
    try:
        litellm.set_verbose = True
        data = {
            "max_tokens": 100,
            "stream": False,
            "temperature": 0.3,
            "messages": [
                {"role": "user", "content": "Hi"},
                {"role": "assistant", "content": "Hi"},
                {
                    "role": "user",
                    "content": [
                        {"text": "describe this image", "type": "text"},
                        {
                            "image_url": {
                                "detail": "high",
                                "url": image_url,
                            },
                            "type": "image_url",
                        },
                    ],
                },
            ],
        }
        response: ModelResponse = completion(
            model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
            num_retries=3,
            **data,
        )  # type: ignore
        # Add any assertions here to check the response
        assert len(response.choices) > 0
        assert len(response.choices[0].message.content) > 0

    except litellm.InternalServerError:
        pass
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.parametrize(
    "stop",
    [""],
)
@pytest.mark.parametrize(
    "model",
    [
        "anthropic.claude-3-sonnet-20240229-v1:0",
        # "meta.llama3-70b-instruct-v1:0",
        # "anthropic.claude-v2",
        # "mistral.mixtral-8x7b-instruct-v0:1",
    ],
)
def test_bedrock_stop_value(stop, model):
    try:
        litellm.set_verbose = True
        data = {
            "max_tokens": 100,
            "stream": False,
            "temperature": 0.3,
            "messages": [
                {"role": "user", "content": "hey, how's it going?"},
            ],
            "stop": stop,
        }
        response: ModelResponse = completion(
            model="bedrock/{}".format(model),
            **data,
        )  # type: ignore
        # Add any assertions here to check the response
        assert len(response.choices) > 0
        assert len(response.choices[0].message.content) > 0

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.parametrize(
    "system",
    ["You are an AI", [{"type": "text", "text": "You are an AI"}], ""],
)
@pytest.mark.parametrize(
    "model",
    [
        "anthropic.claude-3-sonnet-20240229-v1:0",
        # "meta.llama3-70b-instruct-v1:0",
        "anthropic.claude-v2",
        "mistral.mixtral-8x7b-instruct-v0:1",
    ],
)
def test_bedrock_system_prompt(system, model):
    try:
        litellm.set_verbose = True
        data = {
            "max_tokens": 100,
            "stream": False,
            "temperature": 0.3,
            "messages": [
                {"role": "system", "content": system},
                {"role": "assistant", "content": "hey, how's it going?"},
            ],
            "user_continue_message": {"role": "user", "content": "Be a good bot!"},
        }
        response: ModelResponse = completion(
            model="bedrock/{}".format(model),
            **data,
        )  # type: ignore
        # Add any assertions here to check the response
        assert len(response.choices) > 0
        assert len(response.choices[0].message.content) > 0

    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


def test_bedrock_claude_3_tool_calling():
    try:
        litellm.set_verbose = True
        litellm._turn_on_debug()
        tools = [
            {
                "type": "function",
                "function": {
                    "name": "get_current_weather",
                    "description": "Get the current weather in a given location",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The city and state, e.g. San Francisco, CA",
                            },
                            "unit": {
                                "type": "string",
                                "enum": ["celsius", "fahrenheit"],
                            },
                        },
                        "required": ["location"],
                    },
                },
            }
        ]
        messages = [
            {
                "role": "user",
                "content": "What's the weather like in Boston today in fahrenheit?",
            }
        ]
        response: ModelResponse = completion(
            model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
            messages=messages,
            tools=tools,
            tool_choice="auto",
        )  # type: ignore
        print(f"response: {response}")
        # Add any assertions here to check the response
        assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
        assert isinstance(
            response.choices[0].message.tool_calls[0].function.arguments, str
        )
        messages.append(
            response.choices[0].message.model_dump()
        )  # Add assistant tool invokes
        tool_result = (
            '{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
        )
        # Add user submitted tool results in the OpenAI format
        messages.append(
            {
                "tool_call_id": response.choices[0].message.tool_calls[0].id,
                "role": "tool",
                "name": response.choices[0].message.tool_calls[0].function.name,
                "content": tool_result,
            }
        )
        # In the second response, Claude should deduce answer from tool results
        second_response = completion(
            model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
            messages=messages,
            tools=tools,
            tool_choice="auto",
        )
        print(f"second response: {second_response}")
        assert isinstance(second_response.choices[0].message.content, str)
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


def encode_image(image_path):
    import base64

    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


@pytest.mark.skip(
    reason="we already test claude-3, this is just another way to pass images"
)
def test_completion_claude_3_base64():
    try:
        litellm.set_verbose = True
        litellm.num_retries = 3
        image_path = "../proxy/cached_logo.jpg"
        # Getting the base64 string
        base64_image = encode_image(image_path)
        resp = litellm.completion(
            model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Whats in this image?"},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "data:image/jpeg;base64," + base64_image
                            },
                        },
                    ],
                }
            ],
        )

        prompt_tokens = resp.usage.prompt_tokens
        raise Exception("it worked!")
    except Exception as e:
        if "500 Internal error encountered.'" in str(e):
            pass
        else:
            pytest.fail(f"An exception occurred - {str(e)}")


def test_completion_bedrock_mistral_completion_auth():
    print("calling bedrock mistral completion params auth")

    import os

    litellm._turn_on_debug()

    # aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
    # aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
    # aws_region_name = os.environ["AWS_REGION_NAME"]
    # os.environ.pop("AWS_ACCESS_KEY_ID", None)
    # os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
    # os.environ.pop("AWS_REGION_NAME", None)
    try:
        response: ModelResponse = completion(
            model="bedrock/mistral.mistral-7b-instruct-v0:2",
            messages=messages,
            max_tokens=10,
            temperature=0.1,
        )  # type: ignore
        # Add any assertions here to check the response
        print(f"response: {response}")
        assert len(response.choices) > 0
        assert len(response.choices[0].message.content) > 0

        # os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        # os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
        # os.environ["AWS_REGION_NAME"] = aws_region_name
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


# test_completion_bedrock_mistral_completion_auth()


def test_bedrock_ptu():
    """
    Check if a url with 'modelId' passed in, is created correctly

    Reference: https://github.com/BerriAI/litellm/issues/3805
    """
    client = HTTPHandler()

    with patch.object(client, "post", new=Mock()) as mock_client_post:
        litellm.set_verbose = True
        from openai.types.chat import ChatCompletion

        model_id = (
            "arn:aws:bedrock:us-west-2:888602223428:provisioned-model/8fxff74qyhs3"
        )
        try:
            response = litellm.completion(
                model="bedrock/anthropic.claude-instant-v1",
                messages=[{"role": "user", "content": "What's AWS?"}],
                model_id=model_id,
                client=client,
            )
        except Exception as e:
            pass

        assert "url" in mock_client_post.call_args.kwargs
        assert (
            mock_client_post.call_args.kwargs["url"]
            == "https://bedrock-runtime.us-west-2.amazonaws.com/model/arn%3Aaws%3Abedrock%3Aus-west-2%3A888602223428%3Aprovisioned-model%2F8fxff74qyhs3/converse"
        )
        mock_client_post.assert_called_once()


@pytest.mark.asyncio
async def test_bedrock_custom_api_base():
    """
    Check if a url with 'modelId' passed in, is created correctly

    Reference: https://github.com/BerriAI/litellm/issues/3805, https://github.com/BerriAI/litellm/issues/5389#issuecomment-2313677977

    """
    client = AsyncHTTPHandler()

    with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
        litellm.set_verbose = True
        from openai.types.chat import ChatCompletion

        try:
            response = await litellm.acompletion(
                model="anthropic.claude-3-sonnet-20240229-v1:0",
                messages=[{"role": "user", "content": "What's AWS?"}],
                client=client,
                extra_headers={"test": "hello world", "Authorization": "my-test-key"},
                api_base="https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1",
            )
        except Exception as e:
            pass

        print(f"mock_client_post.call_args.kwargs: {mock_client_post.call_args.kwargs}")
        assert (
            mock_client_post.call_args.kwargs["url"]
            == "https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1/model/anthropic.claude-3-sonnet-20240229-v1%3A0/converse"
        )
        assert "test" in mock_client_post.call_args.kwargs["headers"]
        assert mock_client_post.call_args.kwargs["headers"]["test"] == "hello world"
        assert (
            mock_client_post.call_args.kwargs["headers"]["Authorization"]
            == "my-test-key"
        )
        mock_client_post.assert_called_once()


@pytest.mark.parametrize(
    "model",
    [
        "anthropic.claude-3-sonnet-20240229-v1:0",
        "bedrock/invoke/anthropic.claude-3-sonnet-20240229-v1:0",
    ],
)
@pytest.mark.asyncio
async def test_bedrock_extra_headers(model):
    """
    Relevant Issue: https://github.com/BerriAI/litellm/issues/9106
    """
    client = AsyncHTTPHandler()

    with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
        litellm.set_verbose = True
        from openai.types.chat import ChatCompletion

        try:
            response = await litellm.acompletion(
                model=model,
                messages=[{"role": "user", "content": "What's AWS?"}],
                client=client,
                extra_headers={"test": "hello world", "Authorization": "my-test-key"},
            )
        except Exception as e:
            print(f"error: {e}")

        print(f"mock_client_post.call_args.kwargs: {mock_client_post.call_args.kwargs}")
        assert "test" in mock_client_post.call_args.kwargs["headers"]
        assert mock_client_post.call_args.kwargs["headers"]["test"] == "hello world"
        assert (
            mock_client_post.call_args.kwargs["headers"]["Authorization"]
            == "my-test-key"
        )
        mock_client_post.assert_called_once()


@pytest.mark.asyncio
async def test_bedrock_custom_prompt_template():
    """
    Check if custom prompt template used for bedrock models

    Reference: https://github.com/BerriAI/litellm/issues/4415
    """
    client = AsyncHTTPHandler()

    with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
        import json

        try:
            response = await litellm.acompletion(
                model="bedrock/mistral.OpenOrca",
                messages=[{"role": "user", "content": "What's AWS?"}],
                client=client,
                roles={
                    "system": {
                        "pre_message": "<|im_start|>system\n",
                        "post_message": "<|im_end|>",
                    },
                    "assistant": {
                        "pre_message": "<|im_start|>assistant\n",
                        "post_message": "<|im_end|>",
                    },
                    "user": {
                        "pre_message": "<|im_start|>user\n",
                        "post_message": "<|im_end|>",
                    },
                },
                bos_token="<s>",
                eos_token="<|im_end|>",
            )
        except Exception as e:
            pass

        print(f"mock_client_post.call_args: {mock_client_post.call_args}")
        assert "prompt" in json.loads(mock_client_post.call_args.kwargs["data"])

        prompt = json.loads(mock_client_post.call_args.kwargs["data"])["prompt"]
        assert prompt == "<|im_start|>user\nWhat's AWS?<|im_end|>"
        mock_client_post.assert_called_once()


def test_completion_bedrock_external_client_region():
    print("\ncalling bedrock claude external client auth")
    import os

    aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
    aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
    aws_region_name = "us-east-1"

    os.environ.pop("AWS_ACCESS_KEY_ID", None)
    os.environ.pop("AWS_SECRET_ACCESS_KEY", None)

    client = HTTPHandler()

    try:
        import boto3

        litellm.set_verbose = True

        bedrock = boto3.client(
            service_name="bedrock-runtime",
            region_name=aws_region_name,
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
        )
        with patch.object(client, "post", new=Mock()) as mock_client_post:
            try:
                response = completion(
                    model="bedrock/anthropic.claude-instant-v1",
                    messages=messages,
                    max_tokens=10,
                    temperature=0.1,
                    aws_bedrock_client=bedrock,
                    client=client,
                )
                # Add any assertions here to check the response
                print(response)
            except Exception as e:
                pass

            print(f"mock_client_post.call_args: {mock_client_post.call_args}")
            assert "us-east-1" in mock_client_post.call_args.kwargs["url"]

            mock_client_post.assert_called_once()

        os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
    except RateLimitError:
        pass
    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


def test_bedrock_tool_calling():
    """
    # related issue: https://github.com/BerriAI/litellm/issues/5007
    # Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
    """
    litellm.set_verbose = True
    response = litellm.completion(
        model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
        fallbacks=["bedrock/meta.llama3-1-8b-instruct-v1:0"],
        messages=[
            {
                "role": "user",
                "content": "What's the weather like in Boston today in Fahrenheit?",
            }
        ],
        tools=[
            {
                "type": "function",
                "function": {
                    "name": "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993",
                    "description": "use this to get the current weather",
                    "parameters": {"type": "object", "properties": {}},
                },
            }
        ],
    )

    print("bedrock response")
    print(response)

    # Assert that the tools in response have the same function name as the input
    _choice_1 = response.choices[0]
    if _choice_1.message.tool_calls is not None:
        print(_choice_1.message.tool_calls)
        for tool_call in _choice_1.message.tool_calls:
            _tool_Call_name = tool_call.function.name
            if _tool_Call_name is not None and "DoSomethingVeryCool" in _tool_Call_name:
                assert (
                    _tool_Call_name
                    == "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993"
                )


def test_bedrock_tools_pt_valid_names():
    """
    # related issue: https://github.com/BerriAI/litellm/issues/5007
    # Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true

    """
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {"type": "string"},
                    },
                    "required": ["location"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "search_restaurants",
                "description": "Search for restaurants",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "cuisine": {"type": "string"},
                    },
                    "required": ["cuisine"],
                },
            },
        },
    ]

    result = _bedrock_tools_pt(tools)

    assert len(result) == 2
    assert result[0]["toolSpec"]["name"] == "get_current_weather"
    assert result[1]["toolSpec"]["name"] == "search_restaurants"


def test_bedrock_tools_pt_invalid_names():
    """
    # related issue: https://github.com/BerriAI/litellm/issues/5007
    # Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true

    """

    tools = [
        {
            "type": "function",
            "function": {
                "name": "123-invalid@name",
                "description": "Invalid name test",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "test": {"type": "string"},
                    },
                    "required": ["test"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "another@invalid#name",
                "description": "Another invalid name test",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "test": {"type": "string"},
                    },
                    "required": ["test"],
                },
            },
        },
    ]

    result = _bedrock_tools_pt(tools)

    print("bedrock tools after prompt formatting=", result)

    assert len(result) == 2
    assert result[0]["toolSpec"]["name"] == "a123_invalid_name"
    assert result[1]["toolSpec"]["name"] == "another_invalid_name"


def test_bedrock_tools_transformation_valid_params():
    from litellm.types.llms.bedrock import ToolJsonSchemaBlock
    tools = [
        {
            "type": "function",
            "function": {
                "name": "123-invalid@name",
                "description": "Invalid name test",
                "parameters": {
                    "$id": "https://some/internal/name",
                    "type": "object",
                    "$schema": "https://json-schema.org/draft/2020-12/schema",
                    "properties": {
                        "test": {"type": "string"},
                    },
                    "required": ["test"],
                },
            },
        }
    ]

    result = _bedrock_tools_pt(tools)

    print("bedrock tools after prompt formatting=", result)
     # Ensure the keys for properties in the response is a subset of keys in ToolJsonSchemaBlock
    toolJsonSchema = result[0]["toolSpec"]["inputSchema"]["json"]
    assert toolJsonSchema is not None
    print("transformed toolJsonSchema keys=", toolJsonSchema.keys())
    print("allowed ToolJsonSchemaBlock keys=", ToolJsonSchemaBlock.__annotations__.keys())
    assert set(toolJsonSchema.keys()).issubset(set(ToolJsonSchemaBlock.__annotations__.keys()))

    
    assert isinstance(result, list)
    assert len(result) == 1
    assert "toolSpec" in result[0]
    assert result[0]["toolSpec"]["name"] == "a123_invalid_name"
    assert result[0]["toolSpec"]["description"] == "Invalid name test"
    assert "inputSchema" in result[0]["toolSpec"]
    assert "json" in result[0]["toolSpec"]["inputSchema"]
    assert result[0]["toolSpec"]["inputSchema"]["json"]["properties"]["test"]["type"] == "string"
    assert "test" in result[0]["toolSpec"]["inputSchema"]["json"]["required"]



def test_not_found_error():
    with pytest.raises(litellm.NotFoundError):
        completion(
            model="bedrock/bad_model",
            messages=[
                {
                    "role": "user",
                    "content": "What is the meaning of life",
                }
            ],
        )


@pytest.mark.parametrize(
    "model",
    [
        "bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
        "bedrock/us.meta.llama3-2-11b-instruct-v1:0",
    ],
)
def test_bedrock_cross_region_inference(model):
    litellm.set_verbose = True
    response = completion(
        model=model,
        messages=messages,
        max_tokens=10,
        temperature=0.1,
    )


@pytest.mark.parametrize(
    "model, expected_base_model",
    [
        (
            "apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
            "anthropic.claude-3-5-sonnet-20240620-v1:0",
        ),
    ],
)
def test_bedrock_get_base_model(model, expected_base_model):
    from litellm.llms.bedrock.common_utils import BedrockModelInfo

    assert BedrockModelInfo.get_base_model(model) == expected_base_model


from litellm.litellm_core_utils.prompt_templates.factory import (
    _bedrock_converse_messages_pt,
)


def test_bedrock_converse_translation_tool_message():
    from litellm.types.utils import ChatCompletionMessageToolCall, Function

    litellm.set_verbose = True

    messages = [
        {
            "role": "user",
            "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
        },
        {
            "tool_call_id": "tooluse_DnqEmD5qR6y2-aJ-Xd05xw",
            "role": "tool",
            "name": "get_current_weather",
            "content": [
                {
                    "text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
                    "type": "text",
                }
            ],
        },
    ]

    translated_msg = _bedrock_converse_messages_pt(
        messages=messages, model="", llm_provider=""
    )

    print(translated_msg)
    assert translated_msg == [
        {
            "role": "user",
            "content": [
                {
                    "text": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses"
                },
                {
                    "toolResult": {
                        "content": [
                            {
                                "text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}'
                            }
                        ],
                        "toolUseId": "tooluse_DnqEmD5qR6y2-aJ-Xd05xw",
                    }
                },
            ],
        }
    ]


def test_base_aws_llm_get_credentials():
    import time

    import boto3

    from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM

    start_time = time.time()
    session = boto3.Session(
        aws_access_key_id="test",
        aws_secret_access_key="test2",
        region_name="test3",
    )
    credentials = session.get_credentials().get_frozen_credentials()
    end_time = time.time()

    print(
        "Total time for credentials - {}. Credentials - {}".format(
            end_time - start_time, credentials
        )
    )

    start_time = time.time()
    credentials = BaseAWSLLM().get_credentials(
        aws_access_key_id="test",
        aws_secret_access_key="test2",
        aws_region_name="test3",
    )

    end_time = time.time()

    print(
        "Total time for credentials - {}. Credentials - {}".format(
            end_time - start_time, credentials.get_frozen_credentials()
        )
    )


def test_bedrock_completion_test_2():
    litellm.set_verbose = True
    data = {
        "model": "bedrock/anthropic.claude-3-opus-20240229-v1:0",
        "messages": [
            {
                "role": "system",
                "content": "You are Claude Dev, a highly skilled software developer with extensive knowledge in many programming languages, frameworks, design patterns, and best practices.\n\n====\n \nCAPABILITIES\n\n- You can read and analyze code in various programming languages, and can write clean, efficient, and well-documented code.\n- You can debug complex issues and providing detailed explanations, offering architectural insights and design patterns.\n- You have access to tools that let you execute CLI commands on the user's computer, list files, view source code definitions, regex search, inspect websites, read and write files, and ask follow-up questions. These tools help you effectively accomplish a wide range of tasks, such as writing code, making edits or improvements to existing files, understanding the current state of a project, performing system operations, and much more.\n- When the user initially gives you a task, a recursive list of all filepaths in the current working directory ('/Users/hongbo-miao/Clouds/Git/hongbomiao.com') will be included in environment_details. This provides an overview of the project's file structure, offering key insights into the project from directory/file names (how developers conceptualize and organize their code) and file extensions (the language used). This can also guide decision-making on which files to explore further. If you need to further explore directories such as outside the current working directory, you can use the list_files tool. If you pass 'true' for the recursive parameter, it will list files recursively. Otherwise, it will list files at the top level, which is better suited for generic directories where you don't necessarily need the nested structure, like the Desktop.\n- You can use search_files to perform regex searches across files in a specified directory, outputting context-rich results that include surrounding lines. This is particularly useful for understanding code patterns, finding specific implementations, or identifying areas that need refactoring.\n- You can use the list_code_definition_names tool to get an overview of source code definitions for all files at the top level of a specified directory. This can be particularly useful when you need to understand the broader context and relationships between certain parts of the code. You may need to call this tool multiple times to understand various parts of the codebase related to the task.\n\t- For example, when asked to make edits or improvements you might analyze the file structure in the initial environment_details to get an overview of the project, then use list_code_definition_names to get further insight using source code definitions for files located in relevant directories, then read_file to examine the contents of relevant files, analyze the code and suggest improvements or make necessary edits, then use the write_to_file tool to implement changes. If you refactored code that could affect other parts of the codebase, you could use search_files to ensure you update other files as needed.\n- You can use the execute_command tool to run commands on the user's computer whenever you feel it can help accomplish the user's task. When you need to execute a CLI command, you must provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, since they are more flexible and easier to run. Interactive and long-running commands are allowed, since the commands are run in the user's VSCode terminal. The user may keep commands running in the background and you will be kept updated on their status along the way. Each command you execute is run in a new terminal instance.\n- You can use the inspect_site tool to capture a screenshot and console logs of the initial state of a website (including html files and locally running development servers) when you feel it is necessary in accomplishing the user's task. This tool may be useful at key stages of web development tasks-such as after implementing new features, making substantial changes, when troubleshooting issues, or to verify the result of your work. You can analyze the provided screenshot to ensure correct rendering or identify errors, and review console logs for runtime issues.\n\t- For example, if asked to add a component to a react website, you might create the necessary files, use execute_command to run the site locally, then use inspect_site to verify there are no runtime errors on page load.\n\n====\n\nRULES\n\n- Your current working directory is: /Users/hongbo-miao/Clouds/Git/hongbomiao.com\n- You cannot `cd` into a different directory to complete a task. You are stuck operating from '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', so be sure to pass in the correct 'path' parameter when using tools that require a path.\n- Do not use the ~ character or $HOME to refer to the home directory.\n- Before using the execute_command tool, you must first think about the SYSTEM INFORMATION context provided to understand the user's environment and tailor your commands to ensure they are compatible with their system. You must also consider if the command you need to run should be executed in a specific directory outside of the current working directory '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', and if so prepend with `cd`'ing into that directory && then executing the command (as one command since you are stuck operating from '/Users/hongbo-miao/Clouds/Git/hongbomiao.com'). For example, if you needed to run `npm install` in a project outside of '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', you would need to prepend with a `cd` i.e. pseudocode for this would be `cd (path to project) && (command, in this case npm install)`.\n- When using the search_files tool, craft your regex patterns carefully to balance specificity and flexibility. Based on the user's task you may use it to find code patterns, TODO comments, function definitions, or any text-based information across the project. The results include context, so analyze the surrounding code to better understand the matches. Leverage the search_files tool in combination with other tools for more comprehensive analysis. For example, use it to find specific code patterns, then use read_file to examine the full context of interesting matches before using write_to_file to make informed changes.\n- When creating a new project (such as an app, website, or any software project), organize all new files within a dedicated project directory unless the user specifies otherwise. Use appropriate file paths when writing files, as the write_to_file tool will automatically create any necessary directories. Structure the project logically, adhering to best practices for the specific type of project being created. Unless otherwise specified, new projects should be easily run without additional setup, for example most projects can be built in HTML, CSS, and JavaScript - which you can open in a browser.\n- You must try to use multiple tools in one request when possible. For example if you were to create a website, you would use the write_to_file tool to create the necessary files with their appropriate contents all at once. Or if you wanted to analyze a project, you could use the read_file tool multiple times to look at several key files. This will help you accomplish the user's task more efficiently.\n- Be sure to consider the type of project (e.g. Python, JavaScript, web application) when determining the appropriate structure and files to include. Also consider what files may be most relevant to accomplishing the task, for example looking at a project's manifest file would help you understand the project's dependencies, which you could incorporate into any code you write.\n- When making changes to code, always consider the context in which the code is being used. Ensure that your changes are compatible with the existing codebase and that they follow the project's coding standards and best practices.\n- Do not ask for more information than necessary. Use the tools provided to accomplish the user's request efficiently and effectively. When you've completed your task, you must use the attempt_completion tool to present the result to the user. The user may provide feedback, which you can use to make improvements and try again.\n- You are only allowed to ask the user questions using the ask_followup_question tool. Use this tool only when you need additional details to complete a task, and be sure to use a clear and concise question that will help you move forward with the task. However if you can use the available tools to avoid having to ask the user questions, you should do so. For example, if the user mentions a file that may be in an outside directory like the Desktop, you should use the list_files tool to list the files in the Desktop and check if the file they are talking about is there, rather than asking the user to provide the file path themselves.\n- When executing commands, if you don't see the expected output, assume the terminal executed the command successfully and proceed with the task. The user's terminal may be unable to stream the output back properly. If you absolutely need to see the actual terminal output, use the ask_followup_question tool to request the user to copy and paste it back to you.\n- Your goal is to try to accomplish the user's task, NOT engage in a back and forth conversation.\n- NEVER end completion_attempt with a question or request to engage in further conversation! Formulate the end of your result in a way that is final and does not require further input from the user. \n- NEVER start your responses with affirmations like \"Certainly\", \"Okay\", \"Sure\", \"Great\", etc. You should NOT be conversational in your responses, but rather direct and to the point.\n- Feel free to use markdown as much as you'd like in your responses. When using code blocks, always include a language specifier.\n- When presented with images, utilize your vision capabilities to thoroughly examine them and extract meaningful information. Incorporate these insights into your thought process as you accomplish the user's task.\n- At the end of each user message, you will automatically receive environment_details. This information is not written by the user themselves, but is auto-generated to provide potentially relevant context about the project structure and environment. While this information can be valuable for understanding the project context, do not treat it as a direct part of the user's request or response. Use it to inform your actions and decisions, but don't assume the user is explicitly asking about or referring to this information unless they clearly do so in their message. When using environment_details, explain your actions clearly to ensure the user understands, as they may not be aware of these details.\n- CRITICAL: When editing files with write_to_file, ALWAYS provide the COMPLETE file content in your response. This is NON-NEGOTIABLE. Partial updates or placeholders like '// rest of code unchanged' are STRICTLY FORBIDDEN. You MUST include ALL parts of the file, even if they haven't been modified. Failure to do so will result in incomplete or broken code, severely impacting the user's project.\n\n====\n\nOBJECTIVE\n\nYou accomplish a given task iteratively, breaking it down into clear steps and working through them methodically.\n\n1. Analyze the user's task and set clear, achievable goals to accomplish it. Prioritize these goals in a logical order.\n2. Work through these goals sequentially, utilizing available tools as necessary. Each goal should correspond to a distinct step in your problem-solving process. It is okay for certain steps to take multiple iterations, i.e. if you need to create many files, it's okay to create a few files at a time as each subsequent iteration will keep you informed on the work completed and what's remaining. \n3. Remember, you have extensive capabilities with access to a wide range of tools that can be used in powerful and clever ways as necessary to accomplish each goal. Before calling a tool, do some analysis within <thinking></thinking> tags. First, analyze the file structure provided in environment_details to gain context and insights for proceeding effectively. Then, think about which of the provided tools is the most relevant tool to accomplish the user's task. Next, go through each of the required parameters of the relevant tool and determine if the user has directly provided or given enough information to infer a value. When deciding if the parameter can be inferred, carefully consider all the context to see if it supports a specific value. If all of the required parameters are present or can be reasonably inferred, close the thinking tag and proceed with the tool call. BUT, if one of the values for a required parameter is missing, DO NOT invoke the function (not even with fillers for the missing params) and instead, ask the user to provide the missing parameters using the ask_followup_question tool. DO NOT ask for more information on optional parameters if it is not provided.\n4. Once you've completed the user's task, you must use the attempt_completion tool to present the result of the task to the user. You may also provide a CLI command to showcase the result of your task; this can be particularly useful for web development tasks, where you can run e.g. `open index.html` to show the website you've built.\n5. The user may provide feedback, which you can use to make improvements and try again. But DO NOT continue in pointless back and forth conversations, i.e. don't end your responses with questions or offers for further assistance.\n\n====\n\nSYSTEM INFORMATION\n\nOperating System: macOS\nDefault Shell: /bin/zsh\nHome Directory: /Users/hongbo-miao\nCurrent Working Directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com\n",
            },
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "<task>\nHello\n</task>"},
                    {
                        "type": "text",
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n../../../.vscode/extensions/continue.continue-0.8.52-darwin-arm64/continue_tutorial.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>",
                    },
                ],
            },
            {
                "role": "assistant",
                "content": '<thinking>\nThe user has simply said "Hello" without providing any specific task or request. There is not enough information to determine which tools would be relevant or necessary to respond.\n\nThe environment details show a list of files and directories in the current working directory, but without a clear task from the user, it\'s not apparent which of these, if any, are relevant.\n\nSince no specific request has been made, there are no required parameters to analyze for any of the available tools. Asking a follow-up question seems to be the most appropriate action to get clarification on what the user needs help with.\n</thinking>',
                "tool_calls": [
                    {
                        "id": "tooluse_OPznXwZaRzCfPaQF2dxRSA",
                        "type": "function",
                        "function": {
                            "name": "ask_followup_question",
                            "arguments": '{"question":"Hello! How can I assist you today? Do you have a specific task or request you need help with? I\'d be happy to help, but I\'ll need some more details on what you\'re looking to accomplish."}',
                        },
                    }
                ],
            },
            {
                "role": "tool",
                "tool_call_id": "tooluse_OPznXwZaRzCfPaQF2dxRSA",
                "content": "<answer>\nExplain this file\n</answer>",
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n../../../.vscode/extensions/continue.continue-0.8.52-darwin-arm64/continue_tutorial.py\n</environment_details>",
                    }
                ],
            },
        ],
        "tools": [
            {
                "type": "function",
                "function": {
                    "name": "execute_command",
                    "description": "Execute a CLI command on the system. Use this when you need to perform system operations or run specific commands to accomplish any step in the user's task. You must tailor your command to the user's system and provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, as they are more flexible and easier to run. Commands will be executed in the current working directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "command": {
                                "type": "string",
                                "description": "The CLI command to execute. This should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
                            }
                        },
                        "required": ["command"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "read_file",
                    "description": "Read the contents of a file at the specified path. Use this when you need to examine the contents of an existing file, for example to analyze code, review text files, or extract information from configuration files. Automatically extracts raw text from PDF and DOCX files. May not be suitable for other types of binary files, as it returns the raw content as a string.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the file to read (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            }
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "write_to_file",
                    "description": "Write content to a file at the specified path. If the file exists, it will be overwritten with the provided content. If the file doesn't exist, it will be created. Always provide the full intended content of the file, without any truncation. This tool will automatically create any directories needed to write the file.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the file to write to (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            },
                            "content": {
                                "type": "string",
                                "description": "The full content to write to the file.",
                            },
                        },
                        "required": ["path", "content"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "search_files",
                    "description": "Perform a regex search across files in a specified directory, providing context-rich results. This tool searches for patterns or specific content across multiple files, displaying each match with encapsulating context.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory to search in (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com). This directory will be recursively searched.",
                            },
                            "regex": {
                                "type": "string",
                                "description": "The regular expression pattern to search for. Uses Rust regex syntax.",
                            },
                            "filePattern": {
                                "type": "string",
                                "description": "Optional glob pattern to filter files (e.g., '*.ts' for TypeScript files). If not provided, it will search all files (*).",
                            },
                        },
                        "required": ["path", "regex"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "list_files",
                    "description": "List files and directories within the specified directory. If recursive is true, it will list all files and directories recursively. If recursive is false or not provided, it will only list the top-level contents.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory to list contents for (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            },
                            "recursive": {
                                "type": "string",
                                "enum": ["true", "false"],
                                "description": "Whether to list files recursively. Use 'true' for recursive listing, 'false' or omit for top-level only.",
                            },
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "list_code_definition_names",
                    "description": "Lists definition names (classes, functions, methods, etc.) used in source code files at the top level of the specified directory. This tool provides insights into the codebase structure and important constructs, encapsulating high-level concepts and relationships that are crucial for understanding the overall architecture.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com) to list top level source code definitions for",
                            }
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "inspect_site",
                    "description": "Captures a screenshot and console logs of the initial state of a website. This tool navigates to the specified URL, takes a screenshot of the entire page as it appears immediately after loading, and collects any console logs or errors that occur during page load. It does not interact with the page or capture any state changes after the initial load.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "url": {
                                "type": "string",
                                "description": "The URL of the site to inspect. This should be a valid URL including the protocol (e.g. http://localhost:3000/page, file:///path/to/file.html, etc.)",
                            }
                        },
                        "required": ["url"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "ask_followup_question",
                    "description": "Ask the user a question to gather additional information needed to complete the task. This tool should be used when you encounter ambiguities, need clarification, or require more details to proceed effectively. It allows for interactive problem-solving by enabling direct communication with the user. Use this tool judiciously to maintain a balance between gathering necessary information and avoiding excessive back-and-forth.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "question": {
                                "type": "string",
                                "description": "The question to ask the user. This should be a clear, specific question that addresses the information you need.",
                            }
                        },
                        "required": ["question"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "attempt_completion",
                    "description": "Once you've completed the task, use this tool to present the result to the user. Optionally you may provide a CLI command to showcase the result of your work, but avoid using commands like 'echo' or 'cat' that merely print text. They may respond with feedback if they are not satisfied with the result, which you can use to make improvements and try again.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "command": {
                                "type": "string",
                                "description": "A CLI command to execute to show a live demo of the result to the user. For example, use 'open index.html' to display a created website. This command should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
                            },
                            "result": {
                                "type": "string",
                                "description": "The result of the task. Formulate this result in a way that is final and does not require further input from the user. Don't end your result with questions or offers for further assistance.",
                            },
                        },
                        "required": ["result"],
                    },
                },
            },
        ],
    }

    from litellm.llms.bedrock.chat.converse_transformation import AmazonConverseConfig

    request = AmazonConverseConfig()._transform_request(
        model=data["model"],
        messages=data["messages"],
        optional_params={"tools": data["tools"]},
        litellm_params={},
    )

    """
    Iterate through the messages

    ensure 'role' is always alternating b/w 'user' and 'assistant'
    """
    _messages = request["messages"]
    for i in range(len(_messages) - 1):
        assert _messages[i]["role"] != _messages[i + 1]["role"]


def test_bedrock_completion_test_3():
    """
    Check if content in tool result is formatted correctly
    """
    from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
    from litellm.litellm_core_utils.prompt_templates.factory import (
        _bedrock_converse_messages_pt,
    )

    messages = [
        {
            "role": "user",
            "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
        },
        Message(
            content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
            role="assistant",
            tool_calls=[
                ChatCompletionMessageToolCall(
                    index=1,
                    function=Function(
                        arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
                        name="get_current_weather",
                    ),
                    id="tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
                    type="function",
                )
            ],
            function_call=None,
        ).model_dump(),
        {
            "tool_call_id": "tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
            "role": "tool",
            "name": "get_current_weather",
            "content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
        },
    ]

    transformed_messages = _bedrock_converse_messages_pt(
        messages=messages, model="", llm_provider=""
    )
    print(transformed_messages)

    assert transformed_messages[-1]["role"] == "user"
    assert transformed_messages[-1]["content"] == [
        {
            "toolResult": {
                "content": [
                    {
                        "text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}'
                    }
                ],
                "toolUseId": "tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
            }
        }
    ]


@pytest.mark.skip(reason="Skipping this test as Bedrock now supports this behavior.")
@pytest.mark.parametrize("modify_params", [True, False])
def test_bedrock_completion_test_4(modify_params):
    litellm.set_verbose = True
    litellm.modify_params = modify_params

    data = {
        "model": "anthropic.claude-3-opus-20240229-v1:0",
        "messages": [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "<task>\nWhat is this file?\n</task>"},
                    {
                        "type": "text",
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>",
                    },
                ],
            },
            {
                "role": "assistant",
                "content": '<thinking>\nThe user is asking about a specific file: main.py. Based on the environment details provided, this file is located in the computer-vision/hm-open3d/src/ directory and is currently open in a VSCode tab.\n\nTo answer the question of what this file is, the most relevant tool would be the read_file tool. This will allow me to examine the contents of main.py to determine its purpose.\n\nThe read_file tool requires the "path" parameter. I can infer this path based on the environment details:\npath: "computer-vision/hm-open3d/src/main.py"\n\nSince I have the necessary parameter, I can proceed with calling the read_file tool.\n</thinking>',
                "tool_calls": [
                    {
                        "id": "tooluse_qCt-KEyWQlWiyHl26spQVA",
                        "type": "function",
                        "function": {
                            "name": "read_file",
                            "arguments": '{"path":"computer-vision/hm-open3d/src/main.py"}',
                        },
                    }
                ],
            },
            {
                "role": "tool",
                "tool_call_id": "tooluse_qCt-KEyWQlWiyHl26spQVA",
                "content": 'import numpy as np\nimport open3d as o3d\n\n\ndef main():\n    ply_point_cloud = o3d.data.PLYPointCloud()\n    pcd = o3d.io.read_point_cloud(ply_point_cloud.path)\n    print(pcd)\n    print(np.asarray(pcd.points))\n\n    demo_crop_data = o3d.data.DemoCropPointCloud()\n    vol = o3d.visualization.read_selection_polygon_volume(\n        demo_crop_data.cropped_json_path\n    )\n    chair = vol.crop_point_cloud(pcd)\n\n    dists = pcd.compute_point_cloud_distance(chair)\n    dists = np.asarray(dists)\n    idx = np.where(dists > 0.01)[0]\n    pcd_without_chair = pcd.select_by_index(idx)\n\n    axis_aligned_bounding_box = chair.get_axis_aligned_bounding_box()\n    axis_aligned_bounding_box.color = (1, 0, 0)\n\n    oriented_bounding_box = chair.get_oriented_bounding_box()\n    oriented_bounding_box.color = (0, 1, 0)\n\n    o3d.visualization.draw_geometries(\n        [pcd_without_chair, chair, axis_aligned_bounding_box, oriented_bounding_box],\n        zoom=0.3412,\n        front=[0.4, -0.2, -0.9],\n        lookat=[2.6, 2.0, 1.5],\n        up=[-0.10, -1.0, 0.2],\n    )\n\n\nif __name__ == "__main__":\n    main()\n',
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n</environment_details>",
                    }
                ],
            },
        ],
        "temperature": 0.2,
        "tools": [
            {
                "type": "function",
                "function": {
                    "name": "execute_command",
                    "description": "Execute a CLI command on the system. Use this when you need to perform system operations or run specific commands to accomplish any step in the user's task. You must tailor your command to the user's system and provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, as they are more flexible and easier to run. Commands will be executed in the current working directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "command": {
                                "type": "string",
                                "description": "The CLI command to execute. This should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
                            }
                        },
                        "required": ["command"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "read_file",
                    "description": "Read the contents of a file at the specified path. Use this when you need to examine the contents of an existing file, for example to analyze code, review text files, or extract information from configuration files. Automatically extracts raw text from PDF and DOCX files. May not be suitable for other types of binary files, as it returns the raw content as a string.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the file to read (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            }
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "write_to_file",
                    "description": "Write content to a file at the specified path. If the file exists, it will be overwritten with the provided content. If the file doesn't exist, it will be created. Always provide the full intended content of the file, without any truncation. This tool will automatically create any directories needed to write the file.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the file to write to (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            },
                            "content": {
                                "type": "string",
                                "description": "The full content to write to the file.",
                            },
                        },
                        "required": ["path", "content"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "search_files",
                    "description": "Perform a regex search across files in a specified directory, providing context-rich results. This tool searches for patterns or specific content across multiple files, displaying each match with encapsulating context.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory to search in (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com). This directory will be recursively searched.",
                            },
                            "regex": {
                                "type": "string",
                                "description": "The regular expression pattern to search for. Uses Rust regex syntax.",
                            },
                            "filePattern": {
                                "type": "string",
                                "description": "Optional glob pattern to filter files (e.g., '*.ts' for TypeScript files). If not provided, it will search all files (*).",
                            },
                        },
                        "required": ["path", "regex"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "list_files",
                    "description": "List files and directories within the specified directory. If recursive is true, it will list all files and directories recursively. If recursive is false or not provided, it will only list the top-level contents.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory to list contents for (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
                            },
                            "recursive": {
                                "type": "string",
                                "enum": ["true", "false"],
                                "description": "Whether to list files recursively. Use 'true' for recursive listing, 'false' or omit for top-level only.",
                            },
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "list_code_definition_names",
                    "description": "Lists definition names (classes, functions, methods, etc.) used in source code files at the top level of the specified directory. This tool provides insights into the codebase structure and important constructs, encapsulating high-level concepts and relationships that are crucial for understanding the overall architecture.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "path": {
                                "type": "string",
                                "description": "The path of the directory (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com) to list top level source code definitions for",
                            }
                        },
                        "required": ["path"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "inspect_site",
                    "description": "Captures a screenshot and console logs of the initial state of a website. This tool navigates to the specified URL, takes a screenshot of the entire page as it appears immediately after loading, and collects any console logs or errors that occur during page load. It does not interact with the page or capture any state changes after the initial load.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "url": {
                                "type": "string",
                                "description": "The URL of the site to inspect. This should be a valid URL including the protocol (e.g. http://localhost:3000/page, file:///path/to/file.html, etc.)",
                            }
                        },
                        "required": ["url"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "ask_followup_question",
                    "description": "Ask the user a question to gather additional information needed to complete the task. This tool should be used when you encounter ambiguities, need clarification, or require more details to proceed effectively. It allows for interactive problem-solving by enabling direct communication with the user. Use this tool judiciously to maintain a balance between gathering necessary information and avoiding excessive back-and-forth.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "question": {
                                "type": "string",
                                "description": "The question to ask the user. This should be a clear, specific question that addresses the information you need.",
                            }
                        },
                        "required": ["question"],
                    },
                },
            },
            {
                "type": "function",
                "function": {
                    "name": "attempt_completion",
                    "description": "Once you've completed the task, use this tool to present the result to the user. Optionally you may provide a CLI command to showcase the result of your work, but avoid using commands like 'echo' or 'cat' that merely print text. They may respond with feedback if they are not satisfied with the result, which you can use to make improvements and try again.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "command": {
                                "type": "string",
                                "description": "A CLI command to execute to show a live demo of the result to the user. For example, use 'open index.html' to display a created website. This command should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
                            },
                            "result": {
                                "type": "string",
                                "description": "The result of the task. Formulate this result in a way that is final and does not require further input from the user. Don't end your result with questions or offers for further assistance.",
                            },
                        },
                        "required": ["result"],
                    },
                },
            },
        ],
        "tool_choice": "auto",
    }

    if modify_params:
        transformed_messages = _bedrock_converse_messages_pt(
            messages=data["messages"], model="", llm_provider=""
        )
        expected_messages = [
            {
                "role": "user",
                "content": [
                    {"text": "<task>\nWhat is this file?\n</task>"},
                    {
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>"
                    },
                ],
            },
            {
                "role": "assistant",
                "content": [
                    {
                        "text": """<thinking>\nThe user is asking about a specific file: main.py. Based on the environment details provided, this file is located in the computer-vision/hm-open3d/src/ directory and is currently open in a VSCode tab.\n\nTo answer the question of what this file is, the most relevant tool would be the read_file tool. This will allow me to examine the contents of main.py to determine its purpose.\n\nThe read_file tool requires the "path" parameter. I can infer this path based on the environment details:\npath: "computer-vision/hm-open3d/src/main.py"\n\nSince I have the necessary parameter, I can proceed with calling the read_file tool.\n</thinking>"""
                    },
                    {
                        "toolUse": {
                            "input": {"path": "computer-vision/hm-open3d/src/main.py"},
                            "name": "read_file",
                            "toolUseId": "tooluse_qCt-KEyWQlWiyHl26spQVA",
                        }
                    },
                ],
            },
            {
                "role": "user",
                "content": [
                    {
                        "toolResult": {
                            "content": [
                                {
                                    "text": 'import numpy as np\nimport open3d as o3d\n\n\ndef main():\n    ply_point_cloud = o3d.data.PLYPointCloud()\n    pcd = o3d.io.read_point_cloud(ply_point_cloud.path)\n    print(pcd)\n    print(np.asarray(pcd.points))\n\n    demo_crop_data = o3d.data.DemoCropPointCloud()\n    vol = o3d.visualization.read_selection_polygon_volume(\n        demo_crop_data.cropped_json_path\n    )\n    chair = vol.crop_point_cloud(pcd)\n\n    dists = pcd.compute_point_cloud_distance(chair)\n    dists = np.asarray(dists)\n    idx = np.where(dists > 0.01)[0]\n    pcd_without_chair = pcd.select_by_index(idx)\n\n    axis_aligned_bounding_box = chair.get_axis_aligned_bounding_box()\n    axis_aligned_bounding_box.color = (1, 0, 0)\n\n    oriented_bounding_box = chair.get_oriented_bounding_box()\n    oriented_bounding_box.color = (0, 1, 0)\n\n    o3d.visualization.draw_geometries(\n        [pcd_without_chair, chair, axis_aligned_bounding_box, oriented_bounding_box],\n        zoom=0.3412,\n        front=[0.4, -0.2, -0.9],\n        lookat=[2.6, 2.0, 1.5],\n        up=[-0.10, -1.0, 0.2],\n    )\n\n\nif __name__ == "__main__":\n    main()\n'
                                }
                            ],
                            "toolUseId": "tooluse_qCt-KEyWQlWiyHl26spQVA",
                        }
                    }
                ],
            },
            {"role": "assistant", "content": [{"text": "Please continue."}]},
            {
                "role": "user",
                "content": [
                    {
                        "text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n</environment_details>"
                    }
                ],
            },
        ]
        assert transformed_messages == expected_messages
    else:
        with pytest.raises(Exception) as e:
            litellm.completion(**data)
        assert "litellm.modify_params" in str(e.value)


def test_bedrock_context_window_error():
    with pytest.raises(litellm.ContextWindowExceededError) as e:
        litellm.completion(
            model="bedrock/claude-3-5-sonnet-20240620",
            messages=[{"role": "user", "content": "Hello, world!"}],
            mock_response=Exception("prompt is too long"),
        )


def test_bedrock_converse_route():
    litellm.set_verbose = True
    litellm.completion(
        model="bedrock/converse/us.amazon.nova-pro-v1:0",
        messages=[{"role": "user", "content": "Hello, world!"}],
    )


def test_bedrock_mapped_converse_models():
    litellm.set_verbose = True
    os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
    litellm.model_cost = litellm.get_model_cost_map(url="")
    litellm.add_known_models()
    litellm.completion(
        model="bedrock/us.amazon.nova-pro-v1:0",
        messages=[{"role": "user", "content": "Hello, world!"}],
    )


def test_bedrock_base_model_helper():
    from litellm.llms.bedrock.common_utils import BedrockModelInfo

    model = "us.amazon.nova-pro-v1:0"
    base_model = BedrockModelInfo.get_base_model(model)
    assert base_model == "amazon.nova-pro-v1:0"

    assert (
        BedrockModelInfo.get_base_model(
            "invoke/anthropic.claude-3-5-sonnet-20241022-v2:0"
        )
        == "anthropic.claude-3-5-sonnet-20241022-v2:0"
    )


@pytest.mark.parametrize(
    "model,expected_route",
    [
        # Test explicit route prefixes
        ("invoke/anthropic.claude-3-sonnet-20240229-v1:0", "invoke"),
        ("converse/anthropic.claude-3-sonnet-20240229-v1:0", "converse"),
        ("converse_like/anthropic.claude-3-sonnet-20240229-v1:0", "converse_like"),
        # Test models in BEDROCK_CONVERSE_MODELS list
        ("anthropic.claude-3-5-haiku-20241022-v1:0", "converse"),
        ("anthropic.claude-v2", "converse"),
        ("meta.llama3-70b-instruct-v1:0", "converse"),
        ("mistral.mistral-large-2407-v1:0", "converse"),
        # Test models with region prefixes
        ("us.anthropic.claude-3-sonnet-20240229-v1:0", "converse"),
        ("us.meta.llama3-70b-instruct-v1:0", "converse"),
        # Test default case (should return "invoke")
        ("amazon.titan-text-express-v1", "invoke"),
        ("cohere.command-text-v14", "invoke"),
        ("cohere.command-r-v1:0", "invoke"),
    ],
)
def test_bedrock_route_detection(model, expected_route):
    """Test all scenarios for BedrockModelInfo.get_bedrock_route"""
    from litellm.llms.bedrock.common_utils import BedrockModelInfo

    route = BedrockModelInfo.get_bedrock_route(model)
    assert (
        route == expected_route
    ), f"Expected route '{expected_route}' for model '{model}', but got '{route}'"


@pytest.mark.parametrize(
    "messages, expected_cache_control",
    [
        (
            [  # test system prompt cache
                {
                    "role": "system",
                    "content": [
                        {
                            "type": "text",
                            "text": "You are an AI assistant tasked with analyzing legal documents.",
                        },
                        {
                            "type": "text",
                            "text": "Here is the full text of a complex legal agreement",
                            "cache_control": {"type": "ephemeral"},
                        },
                    ],
                },
                {
                    "role": "user",
                    "content": "what are the key terms and conditions in this agreement?",
                },
            ],
            True,
        ),
        (
            [  # test user prompt cache
                {
                    "role": "user",
                    "content": "what are the key terms and conditions in this agreement?",
                    "cache_control": {"type": "ephemeral"},
                },
            ],
            True,
        ),
    ],
)
def test_bedrock_prompt_caching_message(messages, expected_cache_control):
    import litellm
    import json

    transformed_messages = litellm.AmazonConverseConfig()._transform_request(
        model="bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
        messages=messages,
        optional_params={},
        litellm_params={},
    )
    if expected_cache_control:
        assert "cachePoint" in json.dumps(transformed_messages)
    else:
        assert "cachePoint" not in json.dumps(transformed_messages)


@pytest.mark.parametrize(
    "model, expected_supports_tool_call",
    [
        ("bedrock/us.amazon.nova-pro-v1:0", True),
        ("bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0", True),
        ("bedrock/mistral.mistral-7b-instruct-v0.1:0", True),
        ("bedrock/meta.llama3-1-8b-instruct:0", True),
        ("bedrock/meta.llama3-2-70b-instruct:0", True),
        ("bedrock/meta.llama3-3-70b-instruct-v1:0", True),
        ("bedrock/amazon.titan-embed-text-v1:0", False),
    ],
)
def test_bedrock_supports_tool_call(model, expected_supports_tool_call):
    supported_openai_params = (
        litellm.AmazonConverseConfig().get_supported_openai_params(model=model)
    )
    if expected_supports_tool_call:
        assert "tools" in supported_openai_params
    else:
        assert "tools" not in supported_openai_params


class TestBedrockConverseChatCrossRegion(BaseLLMChatTest):
    def get_base_completion_call_args(self) -> dict:
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        litellm.add_known_models()
        return {
            "model": "bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
        }

    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        pass

    def test_prompt_caching(self):
        """
        Remove override once we have access to Bedrock prompt caching
        """
        pass

    def test_completion_cost(self):
        """
        Test if region models info is correctly used for cost calculation. Using the base model info for cost calculation.
        """
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        bedrock_model = "us.anthropic.claude-3-5-sonnet-20241022-v2:0"
        litellm.model_cost.pop(bedrock_model, None)
        model = f"bedrock/{bedrock_model}"

        litellm.set_verbose = True
        response = litellm.completion(
            model=model,
            messages=[{"role": "user", "content": "Hello, how are you?"}],
        )
        cost = completion_cost(response)

        assert cost > 0


class TestBedrockConverseAnthropicUnitTests(BaseAnthropicChatTest):
    def get_base_completion_call_args(self) -> dict:
        return {
            "model": "bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
        }

    def get_base_completion_call_args_with_thinking(self) -> dict:
        return {
            "model": "bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
            "thinking": {"type": "enabled", "budget_tokens": 16000},
        }


class TestBedrockConverseChatNormal(BaseLLMChatTest):
    def get_base_completion_call_args(self) -> dict:
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        litellm.add_known_models()
        return {
            "model": "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
            "aws_region_name": "us-east-1",
        }

    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        pass


class TestBedrockConverseNovaTestSuite(BaseLLMChatTest):
    def get_base_completion_call_args(self) -> dict:
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        litellm.add_known_models()
        return {
            "model": "bedrock/us.amazon.nova-lite-v1:0",
            "aws_region_name": "us-east-1",
        }

    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        pass

    
    def test_prompt_caching(self):
        """
        TODO: Ensure this test passes our base llm test suite
        """


class TestBedrockRerank(BaseLLMRerankTest):
    def get_custom_llm_provider(self) -> litellm.LlmProviders:
        return litellm.LlmProviders.BEDROCK

    def get_base_rerank_call_args(self) -> dict:
        return {
            "model": "bedrock/arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0",
        }


class TestBedrockCohereRerank(BaseLLMRerankTest):
    def get_custom_llm_provider(self) -> litellm.LlmProviders:
        return litellm.LlmProviders.BEDROCK

    def get_base_rerank_call_args(self) -> dict:
        return {
            "model": "bedrock/arn:aws:bedrock:us-west-2::foundation-model/cohere.rerank-v3-5:0",
        }


@pytest.mark.parametrize(
    "messages, continue_message_index",
    [
        (
            [
                {"role": "user", "content": [{"type": "text", "text": ""}]},
                {"role": "assistant", "content": [{"type": "text", "text": "Hello!"}]},
            ],
            0,
        ),
        (
            [
                {"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
                {"role": "assistant", "content": [{"type": "text", "text": "   "}]},
            ],
            1,
        ),
    ],
)
def test_bedrock_empty_content_handling(messages, continue_message_index):
    """
    Test that empty content in messages is handled correctly with default messages
    """
    # Test with default behavior (modify_params=True)
    litellm.modify_params = True
    formatted_messages = _bedrock_converse_messages_pt(
        messages=messages,
        model="anthropic.claude-3-sonnet-20240229-v1:0",
        llm_provider="bedrock",
    )
    print(formatted_messages)
    # Verify assistant message with default text was inserted
    assert formatted_messages[0]["role"] == "user"
    assert formatted_messages[1]["role"] == "assistant"
    assert (
        formatted_messages[continue_message_index]["content"][0]["text"]
        == "Please continue."
    )


def test_bedrock_custom_continue_message():
    """
    Test that custom continue messages are used when provided
    """
    messages = [
        {"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
        {"role": "assistant", "content": [{"type": "text", "text": "   "}]},
    ]

    custom_continue = {
        "role": "assistant",
        "content": [{"text": "Custom continue message", "type": "text"}],
    }

    formatted_messages = _bedrock_converse_messages_pt(
        messages=messages,
        model="anthropic.claude-3-sonnet-20240229-v1:0",
        llm_provider="bedrock",
        assistant_continue_message=custom_continue,
    )

    # Verify custom message was used
    assert formatted_messages[1]["role"] == "assistant"
    assert formatted_messages[1]["content"][0]["text"] == "Custom continue message"


def test_bedrock_no_default_message():
    """
    Test that empty content is handled correctly when modify_params=False
    """
    messages = [
        {"role": "user", "content": "Hello!"},
        {"role": "assistant", "content": ""},
        {"role": "user", "content": "Hi again"},
        {"role": "assistant", "content": "Valid response"},
    ]

    litellm.modify_params = False
    formatted_messages = _bedrock_converse_messages_pt(
        messages=messages,
        model="anthropic.claude-3-sonnet-20240229-v1:0",
        llm_provider="bedrock",
    )

    # Verify empty message is present and valid message remains
    assistant_messages = [
        msg for msg in formatted_messages if msg["role"] == "assistant"
    ]
    assert len(assistant_messages) == 2  # Both empty and valid messages present
    assert assistant_messages[0]["content"][0]["text"] == ""  # First message is empty
    assert (
        assistant_messages[1]["content"][0]["text"] == "Valid response"
    )  # Second message is valid


@pytest.mark.parametrize("top_k_param", ["top_k", "topK"])
def test_bedrock_nova_topk(top_k_param):
    litellm.set_verbose = True
    data = {
        "model": "bedrock/us.amazon.nova-pro-v1:0",
        "messages": [{"role": "user", "content": "Hello, world!"}],
        top_k_param: 10,
    }
    original_transform = litellm.AmazonConverseConfig()._transform_request
    captured_data = None

    def mock_transform(*args, **kwargs):
        nonlocal captured_data
        result = original_transform(*args, **kwargs)
        captured_data = result
        return result

    with patch(
        "litellm.AmazonConverseConfig._transform_request", side_effect=mock_transform
    ):
        litellm.completion(**data)

        # Assert that additionalRequestParameters exists and contains topK
        assert "additionalModelRequestFields" in captured_data
        assert "inferenceConfig" in captured_data["additionalModelRequestFields"]
        assert (
            captured_data["additionalModelRequestFields"]["inferenceConfig"]["topK"]
            == 10
        )


def test_bedrock_cross_region_inference(monkeypatch):
    from litellm.llms.custom_httpx.http_handler import HTTPHandler

    monkeypatch.setenv("LITELLM_LOCAL_MODEL_COST_MAP", "True")
    litellm.model_cost = litellm.get_model_cost_map(url="")
    litellm.add_known_models()

    litellm.set_verbose = True
    client = HTTPHandler()

    with patch.object(client, "post") as mock_post:
        try:
            completion(
                model="bedrock/us.meta.llama3-3-70b-instruct-v1:0",
                messages=[{"role": "user", "content": "Hello, world!"}],
                client=client,
            )
        except Exception as e:
            print(e)

        assert (
            mock_post.call_args.kwargs["url"]
            == "https://bedrock-runtime.us-west-2.amazonaws.com/model/us.meta.llama3-3-70b-instruct-v1%3A0/converse"
        )


def test_bedrock_empty_content_real_call():
    completion(
        model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "",
                    },
                    {"type": "text", "text": "Hey, how's it going?"},
                ],
            }
        ],
    )


def test_bedrock_process_empty_text_blocks():
    from litellm.litellm_core_utils.prompt_templates.factory import (
        process_empty_text_blocks,
    )

    message = {
        "message": {"role": "assistant", "content": [{"type": "text", "text": "   "}]},
        "assistant_continue_message": None,
    }
    modified_message = process_empty_text_blocks(**message)
    assert modified_message["content"][0]["text"] == "Please continue."


@pytest.mark.skip(reason="Skipping test due to bedrock changing their response schema support. Come back to this.")
def test_nova_optional_params_tool_choice():
    try:
        litellm.drop_params = True
        litellm.set_verbose = True
        litellm.completion(
            messages=[
                {"role": "user", "content": "A WWII competitive game for 4-8 players"}
            ],
            model="bedrock/us.amazon.nova-pro-v1:0",
            temperature=0.3,
            tools=[
                {
                    "type": "function",
                    "function": {
                        "name": "GameDefinition",
                        "description": "Correctly extracted `GameDefinition` with all the required parameters with correct types",
                        "parameters": {
                            "$defs": {
                                "TurnDurationEnum": {
                                    "enum": ["action", "encounter", "battle", "operation"],
                                    "title": "TurnDurationEnum",
                                    "type": "string",
                                }
                            },
                            "properties": {
                                "id": {
                                    "anyOf": [{"type": "integer"}, {"type": "null"}],
                                    "default": None,
                                    "title": "Id",
                                },
                                "prompt": {"title": "Prompt", "type": "string"},
                                "name": {"title": "Name", "type": "string"},
                                "description": {"title": "Description", "type": "string"},
                                "competitve": {"title": "Competitve", "type": "boolean"},
                                "players_min": {"title": "Players Min", "type": "integer"},
                                "players_max": {"title": "Players Max", "type": "integer"},
                                "turn_duration": {
                                    "$ref": "#/$defs/TurnDurationEnum",
                                    "description": "how long the passing of a turn should represent for a game at this scale",
                                },
                            },
                            "required": [
                                "competitve",
                                "description",
                                "name",
                                "players_max",
                                "players_min",
                                "prompt",
                                "turn_duration",
                            ],
                            "type": "object",
                        },
                    },
                }
            ],
            tool_choice={"type": "function", "function": {"name": "GameDefinition"}},
        )
    except litellm.APIConnectionError:
        pass

class TestBedrockEmbedding(BaseLLMEmbeddingTest):
    def get_base_embedding_call_args(self) -> dict:
        return {
            "model": "bedrock/amazon.titan-embed-image-v1",
        }

    def get_custom_llm_provider(self) -> litellm.LlmProviders:
        return litellm.LlmProviders.BEDROCK

    def test_bedrock_image_embedding_transformation(self):
        from litellm.llms.bedrock.embed.amazon_titan_multimodal_transformation import (
            AmazonTitanMultimodalEmbeddingG1Config,
        )

        args = {
            "input": "",
            "inference_params": {},
        }

        transformed_request = (
            AmazonTitanMultimodalEmbeddingG1Config()._transform_request(**args)
        )
        transformed_request[
            "inputImage"
        ] == "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkBAMAAACCzIhnAAAAG1BMVEURAAD///+ln5/h39/Dv79qX18uHx+If39MPz9oMSdmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABB0lEQVRYhe2SzWrEIBCAh2A0jxEs4j6GLDS9hqWmV5Flt0cJS+lRwv742DXpEjY1kOZW6HwHFZnPmVEBEARBEARB/jd0KYA/bcUYbPrRLh6amXHJ/K+ypMoyUaGthILzw0l+xI0jsO7ZcmCcm4ILd+QuVYgpHOmDmz6jBeJImdcUCmeBqQpuqRIbVmQsLCrAalrGpfoEqEogqbLTWuXCPCo+Ki1XGqgQ+jVVuhB8bOaHkvmYuzm/b0KYLWwoK58oFqi6XfxQ4Uz7d6WeKpna6ytUs5e8betMcqAv5YPC5EZB2Lm9FIn0/VP6R58+/GEY1X1egVoZ/3bt/EqF6malgSAIgiDIH+QL41409QMY0LMAAAAASUVORK5CYII="


@pytest.mark.asyncio
async def test_bedrock_image_url_sync_client():
    from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
    import logging
    from litellm import verbose_logger

    verbose_logger.setLevel(level=logging.DEBUG)

    litellm._turn_on_debug()
    client = AsyncHTTPHandler()

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
                    },
                },
            ],
        }
    ]

    with patch.object(client, "post") as mock_post:
        try:
            await litellm.acompletion(
                model="bedrock/us.amazon.nova-pro-v1:0",
                messages=messages,
                client=client,
            )
        except Exception as e:
            print(e)
        mock_post.assert_called_once()


def test_bedrock_error_handling_streaming():
    from litellm.llms.bedrock.chat.invoke_handler import (
        AWSEventStreamDecoder,
        BedrockError,
    )
    from unittest.mock import patch, Mock

    event = Mock()
    event.to_response_dict = Mock(
        return_value={
            "status_code": 400,
            "headers": {
                ":exception-type": "serviceUnavailableException",
                ":content-type": "application/json",
                ":message-type": "exception",
            },
            "body": b'{"message":"Bedrock is unable to process your request."}',
        }
    )

    decoder = AWSEventStreamDecoder(
        model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
    )
    with pytest.raises(Exception) as e:
        decoder._parse_message_from_event(event)
    assert isinstance(e.value, BedrockError)
    assert "Bedrock is unable to process your request." in e.value.message
    assert e.value.status_code == 400


@pytest.mark.parametrize(
    "image_url",
    [
        "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
        # "https://raw.githubusercontent.com/datasets/gdp/master/data/gdp.csv",
        "https://www.cmu.edu/blackboard/files/evaluate/tests-example.xls",
        "http://www.krishdholakia.com/",
        # "https://raw.githubusercontent.com/datasets/sample-data/master/README.txt", # invalid url
        "https://raw.githubusercontent.com/mdn/content/main/README.md",
    ],
)
@pytest.mark.flaky(retries=6, delay=2)
@pytest.mark.asyncio
async def test_bedrock_document_understanding(image_url):
    from litellm import acompletion

    litellm._turn_on_debug()
    model = "bedrock/us.amazon.nova-pro-v1:0"

    image_content = [
        {"type": "text", "text": f"What's this file about?"},
        {
            "type": "image_url",
            "image_url": image_url,
        },
    ]

    try:
        response = await acompletion(
            model=model,
            messages=[{"role": "user", "content": image_content}],
        )
        assert response is not None
        assert response.choices[0].message.content != ""
    except litellm.ServiceUnavailableError as e:
        pytest.skip("Skipping test due to ServiceUnavailableError")


def test_bedrock_custom_proxy():
    from litellm.llms.custom_httpx.http_handler import HTTPHandler

    client = HTTPHandler()

    with patch.object(client, "post") as mock_post:
        try:
            response = completion(
                model="bedrock/converse_like/us.amazon.nova-pro-v1:0",
                messages=[{"content": "Tell me a joke", "role": "user"}],
                api_key="Token",
                client=client,
                api_base="https://some-api-url/models",
            )
        except Exception as e:
            print(e)
        print(mock_post.call_args.kwargs)
        mock_post.assert_called_once()
        assert mock_post.call_args.kwargs["url"] == "https://some-api-url/models"

        assert mock_post.call_args.kwargs["headers"]["Authorization"] == "Bearer Token"


def test_bedrock_custom_deepseek():
    from litellm.llms.custom_httpx.http_handler import HTTPHandler
    import json

    litellm._turn_on_debug()
    client = HTTPHandler()

    with patch.object(client, "post") as mock_post:
        # Mock the response
        mock_response = Mock()
        mock_response.text = json.dumps(
            {"generation": "Here's a joke...", "stop_reason": "stop"}
        )
        mock_response.status_code = 200
        # Add required response attributes
        mock_response.headers = {"Content-Type": "application/json"}
        mock_response.json = lambda: json.loads(mock_response.text)
        mock_post.return_value = mock_response

        try:
            response = completion(
                model="bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n",  # Updated to specify provider
                messages=[{"role": "user", "content": "Tell me a joke"}],
                max_tokens=100,
                client=client,
            )

            # Print request details
            print("\nRequest Details:")
            print(f"URL: {mock_post.call_args.kwargs['url']}")

            # Verify the URL
            assert (
                mock_post.call_args.kwargs["url"]
                == "https://bedrock-runtime.us-east-1.amazonaws.com/model/arn%3Aaws%3Abedrock%3Aus-east-1%3A086734376398%3Aimported-model%2Fr4c4kewx2s0n/invoke"
            )

            # Verify the request body format
            request_body = json.loads(mock_post.call_args.kwargs["data"])
            print("request_body=", json.dumps(request_body, indent=4, default=str))
            assert "prompt" in request_body
            assert request_body["prompt"] == "Tell me a joke"

            # follows the llama spec
            assert request_body["max_gen_len"] == 100

        except Exception as e:
            print(f"Error: {str(e)}")
            raise e


@pytest.mark.parametrize(
    "model, expected_output",
    [
        ("bedrock/anthropic.claude-3-sonnet-20240229-v1:0", {"top_k": 3}),
        ("bedrock/converse/us.amazon.nova-pro-v1:0", {"inferenceConfig": {"topK": 3}}),
        ("bedrock/meta.llama3-70b-instruct-v1:0", {}),
    ],
)
def test_handle_top_k_value_helper(model, expected_output):
    assert (
        litellm.AmazonConverseConfig()._handle_top_k_value(model, {"topK": 3})
        == expected_output
    )
    assert (
        litellm.AmazonConverseConfig()._handle_top_k_value(model, {"top_k": 3})
        == expected_output
    )


@pytest.mark.parametrize(
    "model, expected_params",
    [
        ("bedrock/anthropic.claude-3-sonnet-20240229-v1:0", {"top_k": 2}),
        ("bedrock/converse/us.amazon.nova-pro-v1:0", {"inferenceConfig": {"topK": 2}}),
        ("bedrock/meta.llama3-70b-instruct-v1:0", {}),
        ("bedrock/mistral.mistral-7b-instruct-v0:2", {}),
    ],
)
def test_bedrock_top_k_param(model, expected_params):
    import json

    client = HTTPHandler()

    with patch.object(client, "post") as mock_post:
        mock_response = Mock()

        if "mistral" in model:
            mock_response.text = json.dumps(
                {"outputs": [{"text": "Here's a joke...", "stop_reason": "stop"}]}
            )
        else:
            mock_response.text = json.dumps(
                {
                    "output": {
                        "message": {
                            "role": "assistant",
                            "content": [{"text": "Here's a joke..."}],
                        }
                    },
                    "usage": {"inputTokens": 12, "outputTokens": 6, "totalTokens": 18},
                    "stopReason": "stop",
                }
            )

        mock_response.status_code = 200
        # Add required response attributes
        mock_response.headers = {"Content-Type": "application/json"}
        mock_response.json = lambda: json.loads(mock_response.text)
        mock_post.return_value = mock_response

        litellm.completion(
            model=model,
            messages=[{"role": "user", "content": "Hello, world!"}],
            top_k=2,
            client=client,
        )
        data = json.loads(mock_post.call_args.kwargs["data"])
        if "mistral" in model:
            assert data["top_k"] == 2
        else:
            assert data["additionalModelRequestFields"] == expected_params


def test_bedrock_invoke_provider():
    assert (
        litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
            "bedrock/invoke/us.anthropic.claude-3-5-sonnet-20240620-v1:0"
        )
        == "anthropic"
    )
    assert (
        litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
            "bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0"
        )
        == "anthropic"
    )
    assert (
        litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
            "bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n"
        )
        == "llama"
    )
    assert (
        litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
            "us.amazon.nova-pro-v1:0"
        )
        == "nova"
    )


def test_bedrock_description_param():
    from litellm import completion
    from litellm.llms.custom_httpx.http_handler import HTTPHandler

    client = HTTPHandler()

    with patch.object(client, "post") as mock_post:
        try:
            response = completion(
                model="bedrock/us.amazon.nova-pro-v1:0",
                messages=[
                    {"role": "user", "content": "What is the meaning of this poem?"}
                ],
                response_format={
                    "type": "json_schema",
                    "json_schema": {
                        "name": "meaning_reasoning",
                        "description": "Find the meaning inside a poem",
                        "schema": {
                            "type": "object",
                            "properties": {"meaning": {"type": "string"}},
                        },
                    },
                },
                client=client,
            )
        except Exception as e:
            print(e)
        mock_post.assert_called_once()

        request_body = json.loads(mock_post.call_args.kwargs["data"])
        request_body_str = json.dumps(request_body, indent=4, default=str)
        print("request_body=", request_body_str)

        assert (
            "Find the meaning inside a poem" in request_body_str
        )  # assert description is passed


@pytest.mark.parametrize(
    "sync_mode",
    [
        True,
        False,
    ],
)
@pytest.mark.asyncio
async def test_bedrock_thinking_in_assistant_message(sync_mode):
    litellm._turn_on_debug()
    from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler

    if sync_mode:
        client = HTTPHandler()
    else:
        client = AsyncHTTPHandler()

    params = {
        "model": "bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
        "messages": [
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "thinking",
                        "thinking": "Alright, let's get started with resolving this issue about implementing `__len__` for the Pipeline class in scikit-learn.\n\n### Step 1: Explore the repository structure to understand it better\n\nLet's first explore the repository structure to get a better understanding of the codebase:\n\n\nls -la /workspace/scikit-learn__scikit-learn__0.21\n\n\nThis will give us an overview of the top-level directories and files. From there, we can delve deeper into relevant parts of the code.\n\nLet's look at the main organization of the repository first, then we'll locate the Pipeline class, understand how it's currently implemented, and then add the `__len__` method to it.\n\nNext, let's look at the pipeline module, as the issue mentions `pipe[:len(pipe)]`, indicating that there is indexing support for Pipeline, but it lacks a `__len__` method.\n\nSince the issue mentions that Pipeline supports indexing but not `__len__`, I'll check the Pipeline class to understand its implementation.\n\nThe Pipeline class is likely to be in sklearn/pipeline.py or within a pipeline directory. Let's look for it:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nThis will help us locate the file containing the Pipeline class.\n\nOnce we've located the file, we'll examine it to understand:\n1. How indexing is currently implemented\n2. Where we need to add the `__len__` method\n3. How the length of a pipeline should be determined\n\nThen, we'll implement the `__len__` method, test our changes to ensure they fix the issue, and verify that our changes don't break existing functionality.\n\nLet's begin by exploring the repository.\n\n### Step 2: Reproduce the error\n\nAfter exploring the repository, I'll create a script to reproduce the error described in the issue. This script will use the code provided in the \"Steps/Code to Reproduce\" section of the issue description.\n\nThen I'll run the script to confirm the error occurs as described, which will help us understand what needs to be fixed.\n\n### Step 3: Fix the issue\n\nOnce I've understood the problem and located the relevant files, I'll modify the code to add the `__len__` method to the Pipeline class. This method should return the number of steps in the pipeline, which is consistent with what a user would expect when calling `len(pipe)`.\n\n### Step 4: Test the fix\n\nAfter implementing the fix, I'll rerun the reproduction script to verify that the error is resolved and `len(pipe)` works correctly.\n\n### Step 5: Consider edge cases\n\nI'll think about potential edge cases like:\n- Empty pipelines\n- Very long pipelines\n- Any other special cases where the `__len__` implementation might behave unexpectedly\n\nI'll add tests for these cases to ensure our implementation handles them correctly.\n\n### Step 6: Comprehensive testing\n\nI'll run the existing tests to ensure our changes don't break any existing functionality, and I'll also write additional tests to specifically test our new `__len__` method.\n\nLet's start with exploring the repository.\n\nLet's start by exploring the repository structure:\n\n\nls -la /workspace/scikit-learn__scikit-learn__0.21\n\n\nNow, let's find the Pipeline class:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nBased on the repository structure, let's look at the pipeline implementation:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's check if there are tests for the Pipeline class:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*test*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nNow, let's create a script to reproduce the error. I'll create a file in the workspace directory and add the code from the issue description:\n\n\ncat > /workspace/reproduce_pipeline_len_error.py << 'EOF'\nfrom sklearn import svm\nfrom sklearn.datasets import samples_generator\nfrom sklearn.feature_selection import SelectKBest\nfrom sklearn.feature_selection import f_regression\nfrom sklearn.pipeline import Pipeline\n\n# generate some data to play with\nX, y = samples_generator.make_classification(\n    n_informative=5, n_redundant=0, random_state=42)\n\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\n\nprint(\"Trying to get length of pipeline...\")\ntry:\n    length = len(pipe)\n    print(f\"Length of pipeline: {length}\")\nexcept Exception as e:\n    print(f\"Error: {type(e).__name__}: {e}\")\nEOF\n\n\nLet's run this to confirm the error:\n\n\npython /workspace/reproduce_pipeline_len_error.py\n\n\nNow, let's implement the `__len__` method in the Pipeline class. First, I'll examine the Pipeline class to understand how it's structured and where to add the `__len__` method.\n\nFrom the error we saw above and looking at the pipeline.py file, we should add a `__len__` method to the Pipeline class.\n\nLet's modify the pipeline.py file:\n\n\ncp /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py /workspace/pipeline.py.backup\n\n\nNow, let's edit the file to add the `__len__` method:\n\n\nsed -n -e '/class Pipeline/,/^class /p' /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nThis will show us the Pipeline class definition so we can understand where to add the `__len__` method.\n\nBased on what we see, I'll add the `__len__` method to the Pipeline class:\n\n\nsed -i -e '/def __getitem__.*:/a\\\n    def __len__(self):\\\n        \"\"\"Returns the length of the Pipeline.\\\n\\\n        Returns\\\n        -------\\\n        length : int\\\n            The number of steps in the pipeline.\\\n        \"\"\"\\\n        return len(self.steps)\n' /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's verify that the changes were applied correctly:\n\n\ngrep -A 10 \"__len__\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nNow, let's run our script again to see if the error is fixed:\n\n\npython /workspace/reproduce_pipeline_len_error.py\n\n\nIf the error is fixed, let's test some edge cases by modifying our script:\n\n\ncat > /workspace/test_pipeline_len.py << 'EOF'\nfrom sklearn.pipeline import Pipeline\nfrom sklearn import svm\nfrom sklearn.feature_selection import SelectKBest, f_regression\nfrom sklearn.datasets import samples_generator\nfrom sklearn.preprocessing import StandardScaler\n\n# Test case 1: Normal pipeline\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nprint(f\"Length of normal pipeline: {len(pipe)}\")\n\n# Test case 2: Empty pipeline\nempty_pipe = Pipeline([])\nprint(f\"Length of empty pipeline: {len(empty_pipe)}\")\n\n# Test case 3: Long pipeline\nX, y = samples_generator.make_classification(\n    n_informative=5, n_redundant=0, random_state=42)\n\nsteps = []\nfor i in range(10):\n    steps.append((f'scaler_{i}', StandardScaler()))\nlong_pipe = Pipeline(steps)\nprint(f\"Length of long pipeline: {len(long_pipe)}\")\n\n# Test case 4: Slicing with len\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nsliced_pipe = pipe[:len(pipe)]\nprint(f\"Original pipe steps: {[name for name, _ in pipe.steps]}\")\nprint(f\"Sliced pipe steps: {[name for name, _ in sliced_pipe.steps]}\")\nEOF\n\n\nLet's run this test script:\n\n\npython /workspace/test_pipeline_len.py\n\n\nLet's also run the tests for the pipeline module to make sure we haven't broken anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest sklearn/tests/test_pipeline.py -v\n\n\nAfter testing the changes, let's update our script once more to test the edge case where we use `len(pipe)` in slicing:\n\n\ncat >> /workspace/test_pipeline_len.py << 'EOF'\n\n# Test case 5: Various slicing operations with len\npipe = Pipeline([\n    ('step1', StandardScaler()),\n    ('step2', SelectKBest(f_regression, k=5)),\n    ('step3', svm.SVC(kernel='linear'))\n])\nprint(f\"\\nOriginal pipe length: {len(pipe)}\")\n\n# Slice from beginning to end\nslice1 = pipe[:len(pipe)]\nprint(f\"pipe[:len(pipe)] steps: {[name for name, _ in slice1.steps]}\")\n\n# Slice from beginning to middle\nslice2 = pipe[:len(pipe)//2]\nprint(f\"pipe[:len(pipe)//2] steps: {[name for name, _ in slice2.steps]}\")\n\n# Slice from middle to end\nslice3 = pipe[len(pipe)//2:]\nprint(f\"pipe[len(pipe)//2:] steps: {[name for name, _ in slice3.steps]}\")\n\n# Slice a subset in the middle\nif len(pipe) >= 3:\n    slice4 = pipe[1:len(pipe)-1]\n    print(f\"pipe[1:len(pipe)-1] steps: {[name for name, _ in slice4.steps]}\")\nEOF\n\n\nLet's run this updated script:\n\n\npython /workspace/test_pipeline_len.py\n\n\nLet's also check all the tests in the sklearn directory to ensure our changes don't break anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nBefore we conclude, let's verify that our changes to scikit-learn match the expected functionality:\n\n1. We have implemented the `__len__` method in the Pipeline class\n2. The method returns the number of steps in the pipeline\n3. We have tested that it works for normal, empty, and long pipelines\n4. We have also tested that slicing operations using `len(pipe)` work correctly\n\nSince the issue description mentioned that the repository already supports indexing but not `__len__`, we didn't have to implement indexing. We only needed to add the `__len__` method to make `len(pipe)` work, which we've done.\n\nOur changes are minimal and focused on solving the specific issue described.\n\nFurthermore, to ensure we've done a thorough job, let's run all sklearn tests to make sure we haven't broken anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest sklearn/tests/\n\n\nLet's check the full implementation of the Pipeline to understand where `__len__` fits in compared to other methods like `__getitem__`:\n\n\nhead -n 300 /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's more specifically check the surrounding methods to ensure our addition fits well with the rest of the class:\n\n\ngrep -A 20 \"__getitem__\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nNow, let's also test our changes against the base commit a62775e99f2a5ea3d51db7160fad783f6cd8a4c5, as mentioned in the requirements:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngit status\n\n\nHmm, we don't have access to the git repository directly. Let's focus on thoroughly testing our changes then.\n\nLet's run the full test suite for the sklearn module to make sure our changes don't break any existing functionality:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nGreat, now let's create a more comprehensive test script to ensure our `__len__` implementation works in various scenarios:\n\n\ncat > /workspace/comprehensive_pipeline_len_test.py << 'EOF'\n\"\"\"\nComprehensive tests for the __len__ method of Pipeline.\n\"\"\"\nfrom sklearn.pipeline import Pipeline, FeatureUnion\nfrom sklearn import svm\nfrom sklearn.feature_selection import SelectKBest, f_regression\nfrom sklearn.datasets import samples_generator\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\n\n# Test case 1: Normal pipeline\nprint(\"Test case 1: Normal pipeline\")\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nprint(f\"Length of normal pipeline: {len(pipe)}\")\nassert len(pipe) == 2, \"Length of normal pipeline should be 2\"\n\n# Test case 2: Empty pipeline\nprint(\"\\nTest case 2: Empty pipeline\")\nempty_pipe = Pipeline([])\nprint(f\"Length of empty pipeline: {len(empty_pipe)}\")\nassert len(empty_pipe) == 0, \"Length of empty pipeline should be 0\"\n\n# Test case 3: Long pipeline\nprint(\"\\nTest case 3: Long pipeline\")\nX, y = samples_generator.make_classification(\n    n_informative=5, n_redundant=0, random_state=42)\n\nsteps = []\nfor i in range(10):\n    steps.append((f'scaler_{i}', StandardScaler()))\nlong_pipe = Pipeline(steps)\nprint(f\"Length of long pipeline: {len(long_pipe)}\")\nassert len(long_pipe) == 10, \"Length of long pipeline should be 10\"\n\n# Test case 4: Pipeline with FeatureUnion\nprint(\"\\nTest case 4: Pipeline with FeatureUnion\")\nunion = FeatureUnion([\n    ('pca', PCA(n_components=1)),\n    ('select', SelectKBest(k=1))\n])\npipe_with_union = Pipeline([\n    ('scaler', StandardScaler()),\n    ('union', union),\n    ('svc', svm.SVC(kernel='linear'))\n])\nprint(f\"Length of pipeline with FeatureUnion: {len(pipe_with_union)}\")\nassert len(pipe_with_union) == 3, \"Length of pipeline with FeatureUnion should be 3\"\n\n# Test case 5: Various slicing operations with len\nprint(\"\\nTest case 5: Various slicing operations with len\")\npipe = Pipeline([\n    ('step1', StandardScaler()),\n    ('step2', SelectKBest(f_regression, k=5)),\n    ('step3', svm.SVC(kernel='linear'))\n])\nprint(f\"Original pipe length: {len(pipe)}\")\nassert len(pipe) == 3, \"Original pipe length should be 3\"\n\n# Slice from beginning to end\nslice1 = pipe[:len(pipe)]\nprint(f\"pipe[:len(pipe)] steps: {[name for name, _ in slice1.steps]}\")\nassert len(slice1) == 3, \"Length of pipe[:len(pipe)] should be 3\"\n\n# Slice from beginning to middle\nslice2 = pipe[:len(pipe)//2]\nprint(f\"pipe[:len(pipe)//2] steps: {[name for name, _ in slice2.steps]}\")\nassert len(slice2) == 1, \"Length of pipe[:len(pipe)//2] should be 1\"\n\n# Slice from middle to end\nslice3 = pipe[len(pipe)//2:]\nprint(f\"pipe[len(pipe)//2:] steps: {[name for name, _ in slice3.steps]}\")\nassert len(slice3) == 2, \"Length of pipe[len(pipe)//2:] should be 2\"\n\n# Slice a subset in the middle\nslice4 = pipe[1:len(pipe)-1]\nprint(f\"pipe[1:len(pipe)-1] steps: {[name for name, _ in slice4.steps]}\")\nassert len(slice4) == 1, \"Length of pipe[1:len(pipe)-1] should be 1\"\n\nprint(\"\\nAll tests passed!\")\nEOF\n\n\nLet's run this comprehensive test:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nLet's also run specific tests from the scikit-learn test suite that relate to Pipeline indexing to ensure our changes integrate well:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing\n\n\nOh, there might not be a specific test named `test_pipeline_indexing`. Let's look at the available tests in the test_pipeline.py file:\n\n\ngrep -r \"def test_\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py\n\n\nLet's run the tests that seem related to pipeline indexing or slicing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing || python -m pytest -xvs sklearn/tests/test_pipeline.py | grep -i \"index\"\n\n\nSince we might not have direct access to specific test names, let's examine the pipeline test file to identify relevant tests:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py | grep -i \"index\\|slicing\\|getitem\"\n\n\nBased on our findings, let's run specific tests that are relevant to our changes:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing || python -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nLet's check if the test_pipeline.py file contains any tests for slicing functionality:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py | grep -A 20 -B 20 \"slicing\\|__getitem__\"\n\n\nLet's modify our comprehensive test script to include more edge cases and ensure it aligns with any existing tests:\n\n\ncat >> /workspace/comprehensive_pipeline_len_test.py << 'EOF'\n\n# Test case 6: Testing on pipeline with make_pipeline\nprint(\"\\nTest case 6: Testing on pipeline with make_pipeline\")\nfrom sklearn.pipeline import make_pipeline\n\npipe = make_pipeline(StandardScaler(), PCA(n_components=2), SelectKBest(k=1))\nprint(f\"Length of make_pipeline: {len(pipe)}\")\nassert len(pipe) == 3, \"Length of make_pipeline should be 3\"\n\n# Test case 7: Testing on nested pipelines\nprint(\"\\nTest case 7: Testing on nested pipelines\")\ninner_pipe = Pipeline([('scaler', StandardScaler()), ('pca', PCA(n_components=2))])\nouter_pipe = Pipeline([('inner', inner_pipe), ('svc', svm.SVC())])\nprint(f\"Length of outer pipeline: {len(outer_pipe)}\")\nassert len(outer_pipe) == 2, \"Length of outer pipeline should be 2\"\n\n# Test case 8: Testing __len__ with negative indexing\nprint(\"\\nTest case 8: Testing __len__ with negative indexing\")\npipe = Pipeline([\n    ('step1', StandardScaler()),\n    ('step2', PCA(n_components=2)),\n    ('step3', SelectKBest(k=1))\n])\nneg_slice = pipe[-len(pipe):]\nprint(f\"pipe[-len(pipe):] steps: {[name for name, _ in neg_slice.steps]}\")\nassert len(neg_slice) == 3, \"Length of pipe[-len(pipe):] should be 3\"\n\nneg_slice2 = pipe[:-len(pipe)]\nprint(f\"pipe[:-len(pipe)] steps: {[name for name, _ in neg_slice2.steps]}\")\nassert len(neg_slice2) == 0, \"Length of pipe[:-len(pipe)] should be 0\"\n\n# Test case 9: Testing complex slicing expressions with len\nprint(\"\\nTest case 9: Testing complex slicing expressions with len\")\npipe = Pipeline([\n    ('step1', StandardScaler()),\n    ('step2', PCA(n_components=2)),\n    ('step3', SelectKBest(k=1)),\n    ('step4', svm.SVC())\n])\ncomplex_slice = pipe[len(pipe)//4:len(pipe)//4*3]\nprint(f\"pipe[len(pipe)//4:len(pipe)//4*3] steps: {[name for name, _ in complex_slice.steps]}\")\nassert len(complex_slice) == 2, \"Length of complex slice should be 2\"\n\nprint(\"\\nAll additional tests passed!\")\nEOF\n\n\nLet's run the updated comprehensive test:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nLet's also verify that our implementation doesn't cause any regressions in the scikit-learn test suite:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nNow, let's also run another specific test related to pipeline functionality:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_metaestimators.py | grep -i \"pipeline\"\n\n\nLet's get a deeper understanding of how the Pipeline class is used in tests by examining test files containing pipeline tests:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"Pipeline\" --include=\"*.py\" sklearn/tests/ | head -n 20\n\n\nLet's also look for any tests related to pipeline length or slicing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"len(\" --include=\"*.py\" sklearn/tests/ | grep -i \"pipeline\" | head -n 20\n\n\nWith all our tests passing, it appears we've successfully implemented the `__len__` method for the Pipeline class, and it behaves as expected in various scenarios.\n\nLet's summarize what we've done:\n\n1. We located the Pipeline class in sklearn/pipeline.py\n2. We identified that it was missing a `__len__` method, which was causing the error described in the issue\n3. We implemented the `__len__` method to return the length of the pipeline's steps list\n4. We verified our fix with a reproduction script and comprehensive tests\n5. We confirmed that existing scikit-learn tests still pass with our changes\n\nOur implementation is minimal and focused on the specific issue, adding only the `__len__` method without changing any existing functionality.\n\nAt this point we can conclude that the issue has been successfully resolved. The Pipeline class now supports `len(pipe)`, which allows expressions like `pipe[:len(pipe)]` to work correctly.\n\nLet's make sure we've run the specific test for pipeline indexing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py | grep -i \"indexing\"\n\n\nLet's also check if there are any tests related to `__len__` or length in the pipeline tests:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"__len__\\|len(\" --include=\"*.py\" sklearn/tests/test_pipeline.py\n\n\nWith all our checks and tests, we're confident that our implementation of the `__len__` method in the Pipeline class correctly resolves the issue described. The method returns the number of steps in the pipeline, which is the expected behavior for `len(pipe)`.\n\nI believe our solution is complete and correct. The changes we made are minimal and focused on the specific issue, and we've thoroughly tested them to ensure they work as expected in various scenarios.\n\nLet's complete the task by running our comprehensive test one more time:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nI think we're good to go. Our implementation of the `__len__` method in the Pipeline class resolves the issue described, allowing expressions like `pipe[:len(pipe)]` to work correctly.\n\nLet's do a final check on the changes we made. The diff should show just the addition of the `__len__` method to the Pipeline class:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ndiff /workspace/pipeline.py.backup sklearn/pipeline.py\n\n\nWith all our checks and tests passing, we've successfully resolved the issue described in the problem statement.\n\nAlright, let's summarize our solution once more:\n\nThe issue was that Pipeline in scikit-learn didn't implement the `__len__` method, which was causing `pipe[:len(pipe)]` to raise an error, even though Pipeline supported indexing.\n\nTo resolve this, we added a `__len__` method to the Pipeline class that returns the number of steps in the pipeline. This allows expressions like `len(pipe)` and `pipe[:len(pipe)]` to work correctly, providing a more consistent and intuitive API for users.\n\nWe thoroughly tested our solution with:\n1. A script to reproduce the original error and confirm our fix\n2. Comprehensive tests for various scenarios, including edge cases\n3. Running the existing scikit-learn test suite to ensure no regressions\n\nThese tests confirm that our solution correctly resolves the issue while maintaining compatibility with the rest of the codebase.\n\nAnd that concludes our implementation.",
                        "signature": "ErUBCkYIARgCIkDnKEqW20HOxB9jS85ReLznKuKSV88wnAJf/M+y9ge7U+GOWAHd/trgmvpgHpJmOBkeUWUftR5g+81TNmAsDd2EEgxQHv0uMQBMvelCR+saDFvnSSfaNOj3NTVYpyIwG1ddKj5AVnXe382HERyVchmOTdn1ebogEFpXlRE66Mckq57xLSygusq6MwAV/6RvKh28HEuwcXNQn+BPIxQDVCwGGUh5g4fpZ6IgGk3mRg==",
                    },
                    {
                        "type": "text",
                        "text": "I'll help you implement the `__len__` method for Pipeline in scikit-learn to fix the issue described. Let's start by exploring the repository and understanding the problem better.\n\n## Step 1: Explore the repository structure\n\nLet's first look at the repository structure:",
                    },
                ],
            },
            {"role": "user", "content": [{"type": "text", "text": "Who do you know?"}]},
        ],
        "max_tokens": 32768,
        "thinking": {"type": "enabled", "budget_tokens": 30720},
    }

    with patch.object(client, "post") as mock_post:
        try:
            if sync_mode:
                response = litellm.completion(**params, client=client)
            else:
                response = await litellm.acompletion(**params, client=client)
        except Exception as e:
            print(e)

        mock_post.assert_called_once()

        print(mock_post.call_args.kwargs)
        json_data = mock_post.call_args.kwargs["data"]

        assert (
            "Alright, let's get started with resolving this issue about implementing"
            in json_data
        )


@pytest.mark.asyncio
async def test_bedrock_stream_thinking_content_openwebui():
    """
    When merge_reasoning_content_in_choices=True

    The content should be collected as

    ```
    <think>
    I am a helpful assistant, the user wants to know who I am
    </think>

    Hi I am Anthropic, I am a helpful assistant

    ```
    """
    response = await litellm.acompletion(
        model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
        messages=[{"role": "user", "content": "Hello who is this?"}],
        stream=True,
        max_tokens=1080,
        thinking={"type": "enabled", "budget_tokens": 1024},
        merge_reasoning_content_in_choices=True,
    )
    content = ""
    async for chunk in response:
        content += chunk.choices[0].delta.content or ""

        # OpenWebUI expects the reasoning_content to be removed, otherwise this will appear as duplicate thinking blocks
        assert getattr(chunk.choices[0].delta, "reasoning_content", None) is None
        print(chunk)

    print("collected content", content)

    # Assert that the content follows the expected format with exactly one thinking section
    think_open_pos = content.find("<think>")
    think_close_pos = content.find("</think>")

    # Assert there's exactly one opening and closing tag
    assert think_open_pos >= 0, "Opening <think> tag not found"
    assert think_close_pos > 0, "Closing </think> tag not found"
    assert (
        content.count("<think>") == 1
    ), "There should be exactly one opening <think> tag"
    assert (
        content.count("</think>") == 1
    ), "There should be exactly one closing </think> tag"

    # Assert the opening tag comes before the closing tag
    assert (
        think_open_pos < think_close_pos
    ), "Opening tag should come before closing tag"

    # Assert there's content between the tags
    thinking_content = content[think_open_pos + 7 : think_close_pos]
    assert (
        len(thinking_content.strip()) > 0
    ), "There should be content between thinking tags"

    # Assert there's content after the closing tag
    assert (
        len(content) > think_close_pos + 8
    ), "There should be content after the thinking tags"
    response_content = content[think_close_pos + 8 :].strip()
    assert (
        len(response_content) > 0
    ), "There should be non-empty content after thinking tags"


def test_bedrock_application_inference_profile():
    from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler

    client = HTTPHandler()
    client2 = HTTPHandler()

    tools = [{
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                        },
                    },
                    "required": ["location"],
                }
            }
        }
    ]


    with patch.object(client, "post") as mock_post, patch.object(
        client2, "post"
    ) as mock_post2:
        try:
            resp = completion(
                model="bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
                messages=[{"role": "user", "content": "Hello, how are you?"}],
                model_id="arn:aws:bedrock:eu-central-1:000000000000:application-inference-profile/a0a0a0a0a0a0",
                client=client,
                tools=tools
            )
        except Exception as e:
            print(e)

        try:
            resp = completion(
                model="bedrock/converse/arn:aws:bedrock:eu-central-1:000000000000:application-inference-profile/a0a0a0a0a0a0",
                messages=[{"role": "user", "content": "Hello, how are you?"}],
                client=client2,
                tools=tools
            )
        except Exception as e:
            print(e)

        mock_post.assert_called_once()
        mock_post2.assert_called_once()
        print(mock_post.call_args.kwargs)
        json_data = mock_post.call_args.kwargs["data"]
        assert mock_post.call_args.kwargs["url"].startswith(
            "https://bedrock-runtime.eu-central-1.amazonaws.com/"
        )
        assert mock_post2.call_args.kwargs["url"] == mock_post.call_args.kwargs["url"]


def return_mocked_response(model: str):
    if model == "bedrock/mistral.mistral-large-2407-v1:0":
        return {
            "metrics": {"latencyMs": 316},
            "output": {
                "message": {
                    "content": [{"text": "Hello! How are you doing today? How can"}],
                    "role": "assistant",
                }
            },
            "stopReason": "max_tokens",
            "usage": {"inputTokens": 5, "outputTokens": 10, "totalTokens": 15},
        }



@pytest.mark.parametrize(
    "model",
    [
        "bedrock/mistral.mistral-large-2407-v1:0",
    ],
)
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
    """
    Tests that:
    - max_completion_tokens is passed as max_tokens to bedrock models
    """
    from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler

    litellm.set_verbose = True

    client = AsyncHTTPHandler()

    mock_response = return_mocked_response(model)
    _model = model.split("/")[1]
    print("\n\nmock_response: ", mock_response)

    with patch.object(client, "post") as mock_client:
        try:
            response = await litellm.acompletion(
                model=model,
                max_completion_tokens=10,
                messages=[{"role": "user", "content": "Hello!"}],
                client=client,
            )
        except Exception as e:
            print(f"Error: {e}")

        mock_client.assert_called_once()
        request_body = json.loads(mock_client.call_args.kwargs["data"])

        print("request_body: ", request_body)

        assert request_body == {
            "messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
            "additionalModelRequestFields": {},
            "system": [],
            "inferenceConfig": {"maxTokens": 10},
        }



def test_bedrock_meta_llama_function_calling():
    """
    Tests that:
    - meta llama models support function calling
    """
    from litellm.utils import return_raw_request
    from litellm.types.utils import CallTypes
    tools = [
            {
                "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                        },
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    messages = [
        {
            "role": "user",
            "content": "What's the weather like in Boston today in fahrenheit?",
        }
    ]
    request_args = {
        "messages": messages,
        "tools": tools,
        "model": "bedrock/us.meta.llama4-scout-17b-instruct-v1:0",
    }

    response = return_raw_request(
        endpoint=CallTypes.completion,
        kwargs=request_args,
    )

    print(response)