Spaces:
Configuration error
Configuration error
File size: 177,008 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 |
"""
Tests Bedrock Completion + Rerank endpoints
"""
# @pytest.mark.skip(reason="AWS Suspended Account")
import os
import sys
import traceback
from dotenv import load_dotenv
import litellm.types
load_dotenv()
import io
import os
import json
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from unittest.mock import AsyncMock, Mock, patch
import pytest
import litellm
from litellm import (
ModelResponse,
RateLimitError,
Timeout,
completion,
completion_cost,
embedding,
)
from litellm.llms.bedrock.chat import BedrockLLM
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.litellm_core_utils.prompt_templates.factory import _bedrock_tools_pt
from base_llm_unit_tests import BaseLLMChatTest, BaseAnthropicChatTest
from base_rerank_unit_tests import BaseLLMRerankTest
from base_embedding_unit_tests import BaseLLMEmbeddingTest
# litellm.num_retries = 3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]
@pytest.fixture(autouse=True)
def reset_callbacks():
print("\npytest fixture - resetting callbacks")
litellm.success_callback = []
litellm._async_success_callback = []
litellm.failure_callback = []
litellm.callbacks = []
def test_completion_bedrock_claude_completion_auth():
print("calling bedrock claude completion params auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_completion_auth()
@pytest.mark.parametrize("streaming", [True, False])
def test_completion_bedrock_guardrails(streaming):
import os
litellm.set_verbose = True
import logging
from litellm._logging import verbose_logger
# verbose_logger.setLevel(logging.DEBUG)
try:
if streaming is False:
response = completion(
model="anthropic.claude-v2",
messages=[
{
"content": "where do i buy coffee from? ",
"role": "user",
}
],
max_tokens=10,
guardrailConfig={
"guardrailIdentifier": "ff6ujrregl1q",
"guardrailVersion": "DRAFT",
"trace": "enabled",
},
)
# Add any assertions here to check the response
print(response)
assert (
"Sorry, the model cannot answer this question. coffee guardrail applied"
in response.choices[0].message.content
)
assert "trace" in response
assert response.trace is not None
print("TRACE=", response.trace)
else:
litellm.set_verbose = True
response = completion(
model="anthropic.claude-v2",
messages=[
{
"content": "where do i buy coffee from? ",
"role": "user",
}
],
stream=True,
max_tokens=10,
guardrailConfig={
"guardrailIdentifier": "ff6ujrregl1q",
"guardrailVersion": "DRAFT",
"trace": "enabled",
},
)
saw_trace = False
for chunk in response:
if "trace" in chunk:
saw_trace = True
print(chunk)
assert (
saw_trace is True
), "Did not see trace in response even when trace=enabled sent in the guardrailConfig"
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_bedrock_claude_2_1_completion_auth():
print("calling bedrock claude 2.1 completion params auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
response = completion(
model="bedrock/anthropic.claude-v2:1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_2_1_completion_auth()
def test_completion_bedrock_claude_external_client_auth():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
import boto3
litellm.set_verbose = True
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
)
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=bedrock,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_external_client_auth()
@pytest.mark.skip(reason="Expired token, need to renew")
def test_completion_bedrock_claude_sts_client_auth():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_TEMP_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_TEMP_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
try:
import boto3
litellm.set_verbose = True
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
response = embedding(
model="cohere.embed-multilingual-v3",
input=["hello world"],
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
response = completion(
model="gpt-3.5-turbo",
messages=messages,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
# Add any assertions here to check the response
print(response)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.fixture()
def bedrock_session_token_creds():
print("\ncalling oidc auto to get aws_session_token credentials")
import os
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_session_token = os.environ.get("AWS_SESSION_TOKEN")
bllm = BedrockLLM()
if aws_session_token is not None:
# For local testing
creds = bllm.get_credentials(
aws_region_name=aws_region_name,
aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
aws_session_token=aws_session_token,
)
else:
# For circle-ci testing
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = (
"arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
)
aws_web_identity_token = "oidc/circleci_v2/"
creds = bllm.get_credentials(
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
return creds
def process_stream_response(res, messages):
import types
if isinstance(res, litellm.utils.CustomStreamWrapper):
chunks = []
for part in res:
chunks.append(part)
text = part.choices[0].delta.content or ""
print(text, end="")
res = litellm.stream_chunk_builder(chunks, messages=messages)
else:
raise ValueError("Response object is not a streaming response")
return res
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_session_token(bedrock_session_token_creds):
print("\ncalling bedrock claude with aws_session_token auth")
import os
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_access_key_id = bedrock_session_token_creds.access_key
aws_secret_access_key = bedrock_session_token_creds.secret_key
aws_session_token = bedrock_session_token_creds.token
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
# This fourth call is to verify streaming api works
response_4 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
stream=True,
)
response_4 = process_stream_response(response_4, messages)
print(response_4)
assert len(response_4.choices) > 0
assert len(response_4.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_bedrock_client(bedrock_session_token_creds):
print("\ncalling bedrock claude with aws_session_token auth")
import os
import boto3
from botocore.client import Config
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_access_key_id = bedrock_session_token_creds.access_key
aws_secret_access_key = bedrock_session_token_creds.secret_key
aws_session_token = bedrock_session_token_creds.token
aws_bedrock_client_west = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
config=Config(read_timeout=600),
)
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=aws_bedrock_client_west,
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_bedrock_client=aws_bedrock_client_west,
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
aws_bedrock_client_east = boto3.client(
service_name="bedrock-runtime",
region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
config=Config(read_timeout=600),
)
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_bedrock_client=aws_bedrock_client_east,
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
# This fourth call is to verify streaming api works
response_4 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_bedrock_client=aws_bedrock_client_east,
stream=True,
)
response_4 = process_stream_response(response_4, messages)
print(response_4)
assert len(response_4.choices) > 0
assert len(response_4.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_sts_client_auth()
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_sts_oidc_auth():
print("\ncalling bedrock claude with oidc auth")
import os
aws_web_identity_token = "oidc/circleci_v2/"
aws_region_name = os.environ["AWS_REGION_NAME"]
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_httpx_command_r_sts_oidc_auth():
print("\ncalling bedrock httpx command r with oidc auth")
import os
aws_web_identity_token = "oidc/circleci_v2/"
aws_region_name = "us-west-2"
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
try:
litellm.set_verbose = True
response = completion(
model="bedrock/cohere.command-r-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="cross-region-test",
aws_sts_endpoint="https://sts-fips.us-east-2.amazonaws.com",
aws_bedrock_runtime_endpoint="https://bedrock-runtime-fips.us-west-2.amazonaws.com",
)
# Add any assertions here to check the response
print(response)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"image_url",
[
"",
"https://avatars.githubusercontent.com/u/29436595?v=",
],
)
def test_bedrock_claude_3(image_url):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "user", "content": "Hi"},
{"role": "assistant", "content": "Hi"},
{
"role": "user",
"content": [
{"text": "describe this image", "type": "text"},
{
"image_url": {
"detail": "high",
"url": image_url,
},
"type": "image_url",
},
],
},
],
}
response: ModelResponse = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
num_retries=3,
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except litellm.InternalServerError:
pass
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"stop",
[""],
)
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
# "meta.llama3-70b-instruct-v1:0",
# "anthropic.claude-v2",
# "mistral.mixtral-8x7b-instruct-v0:1",
],
)
def test_bedrock_stop_value(stop, model):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "user", "content": "hey, how's it going?"},
],
"stop": stop,
}
response: ModelResponse = completion(
model="bedrock/{}".format(model),
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"system",
["You are an AI", [{"type": "text", "text": "You are an AI"}], ""],
)
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
# "meta.llama3-70b-instruct-v1:0",
"anthropic.claude-v2",
"mistral.mixtral-8x7b-instruct-v0:1",
],
)
def test_bedrock_system_prompt(system, model):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "system", "content": system},
{"role": "assistant", "content": "hey, how's it going?"},
],
"user_continue_message": {"role": "user", "content": "Be a good bot!"},
}
response: ModelResponse = completion(
model="bedrock/{}".format(model),
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bedrock_claude_3_tool_calling():
try:
litellm.set_verbose = True
litellm._turn_on_debug()
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in fahrenheit?",
}
]
response: ModelResponse = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
) # type: ignore
print(f"response: {response}")
# Add any assertions here to check the response
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
messages.append(
response.choices[0].message.model_dump()
) # Add assistant tool invokes
tool_result = (
'{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
)
# Add user submitted tool results in the OpenAI format
messages.append(
{
"tool_call_id": response.choices[0].message.tool_calls[0].id,
"role": "tool",
"name": response.choices[0].message.tool_calls[0].function.name,
"content": tool_result,
}
)
# In the second response, Claude should deduce answer from tool results
second_response = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
)
print(f"second response: {second_response}")
assert isinstance(second_response.choices[0].message.content, str)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
@pytest.mark.skip(
reason="we already test claude-3, this is just another way to pass images"
)
def test_completion_claude_3_base64():
try:
litellm.set_verbose = True
litellm.num_retries = 3
image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
prompt_tokens = resp.usage.prompt_tokens
raise Exception("it worked!")
except Exception as e:
if "500 Internal error encountered.'" in str(e):
pass
else:
pytest.fail(f"An exception occurred - {str(e)}")
def test_completion_bedrock_mistral_completion_auth():
print("calling bedrock mistral completion params auth")
import os
litellm._turn_on_debug()
# aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
# aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
# aws_region_name = os.environ["AWS_REGION_NAME"]
# os.environ.pop("AWS_ACCESS_KEY_ID", None)
# os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
# os.environ.pop("AWS_REGION_NAME", None)
try:
response: ModelResponse = completion(
model="bedrock/mistral.mistral-7b-instruct-v0:2",
messages=messages,
max_tokens=10,
temperature=0.1,
) # type: ignore
# Add any assertions here to check the response
print(f"response: {response}")
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
# os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
# os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
# os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_mistral_completion_auth()
def test_bedrock_ptu():
"""
Check if a url with 'modelId' passed in, is created correctly
Reference: https://github.com/BerriAI/litellm/issues/3805
"""
client = HTTPHandler()
with patch.object(client, "post", new=Mock()) as mock_client_post:
litellm.set_verbose = True
from openai.types.chat import ChatCompletion
model_id = (
"arn:aws:bedrock:us-west-2:888602223428:provisioned-model/8fxff74qyhs3"
)
try:
response = litellm.completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{"role": "user", "content": "What's AWS?"}],
model_id=model_id,
client=client,
)
except Exception as e:
pass
assert "url" in mock_client_post.call_args.kwargs
assert (
mock_client_post.call_args.kwargs["url"]
== "https://bedrock-runtime.us-west-2.amazonaws.com/model/arn%3Aaws%3Abedrock%3Aus-west-2%3A888602223428%3Aprovisioned-model%2F8fxff74qyhs3/converse"
)
mock_client_post.assert_called_once()
@pytest.mark.asyncio
async def test_bedrock_custom_api_base():
"""
Check if a url with 'modelId' passed in, is created correctly
Reference: https://github.com/BerriAI/litellm/issues/3805, https://github.com/BerriAI/litellm/issues/5389#issuecomment-2313677977
"""
client = AsyncHTTPHandler()
with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
litellm.set_verbose = True
from openai.types.chat import ChatCompletion
try:
response = await litellm.acompletion(
model="anthropic.claude-3-sonnet-20240229-v1:0",
messages=[{"role": "user", "content": "What's AWS?"}],
client=client,
extra_headers={"test": "hello world", "Authorization": "my-test-key"},
api_base="https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1",
)
except Exception as e:
pass
print(f"mock_client_post.call_args.kwargs: {mock_client_post.call_args.kwargs}")
assert (
mock_client_post.call_args.kwargs["url"]
== "https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1/model/anthropic.claude-3-sonnet-20240229-v1%3A0/converse"
)
assert "test" in mock_client_post.call_args.kwargs["headers"]
assert mock_client_post.call_args.kwargs["headers"]["test"] == "hello world"
assert (
mock_client_post.call_args.kwargs["headers"]["Authorization"]
== "my-test-key"
)
mock_client_post.assert_called_once()
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock/invoke/anthropic.claude-3-sonnet-20240229-v1:0",
],
)
@pytest.mark.asyncio
async def test_bedrock_extra_headers(model):
"""
Relevant Issue: https://github.com/BerriAI/litellm/issues/9106
"""
client = AsyncHTTPHandler()
with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
litellm.set_verbose = True
from openai.types.chat import ChatCompletion
try:
response = await litellm.acompletion(
model=model,
messages=[{"role": "user", "content": "What's AWS?"}],
client=client,
extra_headers={"test": "hello world", "Authorization": "my-test-key"},
)
except Exception as e:
print(f"error: {e}")
print(f"mock_client_post.call_args.kwargs: {mock_client_post.call_args.kwargs}")
assert "test" in mock_client_post.call_args.kwargs["headers"]
assert mock_client_post.call_args.kwargs["headers"]["test"] == "hello world"
assert (
mock_client_post.call_args.kwargs["headers"]["Authorization"]
== "my-test-key"
)
mock_client_post.assert_called_once()
@pytest.mark.asyncio
async def test_bedrock_custom_prompt_template():
"""
Check if custom prompt template used for bedrock models
Reference: https://github.com/BerriAI/litellm/issues/4415
"""
client = AsyncHTTPHandler()
with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
import json
try:
response = await litellm.acompletion(
model="bedrock/mistral.OpenOrca",
messages=[{"role": "user", "content": "What's AWS?"}],
client=client,
roles={
"system": {
"pre_message": "<|im_start|>system\n",
"post_message": "<|im_end|>",
},
"assistant": {
"pre_message": "<|im_start|>assistant\n",
"post_message": "<|im_end|>",
},
"user": {
"pre_message": "<|im_start|>user\n",
"post_message": "<|im_end|>",
},
},
bos_token="<s>",
eos_token="<|im_end|>",
)
except Exception as e:
pass
print(f"mock_client_post.call_args: {mock_client_post.call_args}")
assert "prompt" in json.loads(mock_client_post.call_args.kwargs["data"])
prompt = json.loads(mock_client_post.call_args.kwargs["data"])["prompt"]
assert prompt == "<|im_start|>user\nWhat's AWS?<|im_end|>"
mock_client_post.assert_called_once()
def test_completion_bedrock_external_client_region():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = "us-east-1"
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
client = HTTPHandler()
try:
import boto3
litellm.set_verbose = True
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
)
with patch.object(client, "post", new=Mock()) as mock_client_post:
try:
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=bedrock,
client=client,
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pass
print(f"mock_client_post.call_args: {mock_client_post.call_args}")
assert "us-east-1" in mock_client_post.call_args.kwargs["url"]
mock_client_post.assert_called_once()
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bedrock_tool_calling():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
litellm.set_verbose = True
response = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
fallbacks=["bedrock/meta.llama3-1-8b-instruct-v1:0"],
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
tools=[
{
"type": "function",
"function": {
"name": "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993",
"description": "use this to get the current weather",
"parameters": {"type": "object", "properties": {}},
},
}
],
)
print("bedrock response")
print(response)
# Assert that the tools in response have the same function name as the input
_choice_1 = response.choices[0]
if _choice_1.message.tool_calls is not None:
print(_choice_1.message.tool_calls)
for tool_call in _choice_1.message.tool_calls:
_tool_Call_name = tool_call.function.name
if _tool_Call_name is not None and "DoSomethingVeryCool" in _tool_Call_name:
assert (
_tool_Call_name
== "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993"
)
def test_bedrock_tools_pt_valid_names():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
},
"required": ["location"],
},
},
},
{
"type": "function",
"function": {
"name": "search_restaurants",
"description": "Search for restaurants",
"parameters": {
"type": "object",
"properties": {
"cuisine": {"type": "string"},
},
"required": ["cuisine"],
},
},
},
]
result = _bedrock_tools_pt(tools)
assert len(result) == 2
assert result[0]["toolSpec"]["name"] == "get_current_weather"
assert result[1]["toolSpec"]["name"] == "search_restaurants"
def test_bedrock_tools_pt_invalid_names():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
tools = [
{
"type": "function",
"function": {
"name": "123-invalid@name",
"description": "Invalid name test",
"parameters": {
"type": "object",
"properties": {
"test": {"type": "string"},
},
"required": ["test"],
},
},
},
{
"type": "function",
"function": {
"name": "another@invalid#name",
"description": "Another invalid name test",
"parameters": {
"type": "object",
"properties": {
"test": {"type": "string"},
},
"required": ["test"],
},
},
},
]
result = _bedrock_tools_pt(tools)
print("bedrock tools after prompt formatting=", result)
assert len(result) == 2
assert result[0]["toolSpec"]["name"] == "a123_invalid_name"
assert result[1]["toolSpec"]["name"] == "another_invalid_name"
def test_bedrock_tools_transformation_valid_params():
from litellm.types.llms.bedrock import ToolJsonSchemaBlock
tools = [
{
"type": "function",
"function": {
"name": "123-invalid@name",
"description": "Invalid name test",
"parameters": {
"$id": "https://some/internal/name",
"type": "object",
"$schema": "https://json-schema.org/draft/2020-12/schema",
"properties": {
"test": {"type": "string"},
},
"required": ["test"],
},
},
}
]
result = _bedrock_tools_pt(tools)
print("bedrock tools after prompt formatting=", result)
# Ensure the keys for properties in the response is a subset of keys in ToolJsonSchemaBlock
toolJsonSchema = result[0]["toolSpec"]["inputSchema"]["json"]
assert toolJsonSchema is not None
print("transformed toolJsonSchema keys=", toolJsonSchema.keys())
print("allowed ToolJsonSchemaBlock keys=", ToolJsonSchemaBlock.__annotations__.keys())
assert set(toolJsonSchema.keys()).issubset(set(ToolJsonSchemaBlock.__annotations__.keys()))
assert isinstance(result, list)
assert len(result) == 1
assert "toolSpec" in result[0]
assert result[0]["toolSpec"]["name"] == "a123_invalid_name"
assert result[0]["toolSpec"]["description"] == "Invalid name test"
assert "inputSchema" in result[0]["toolSpec"]
assert "json" in result[0]["toolSpec"]["inputSchema"]
assert result[0]["toolSpec"]["inputSchema"]["json"]["properties"]["test"]["type"] == "string"
assert "test" in result[0]["toolSpec"]["inputSchema"]["json"]["required"]
def test_not_found_error():
with pytest.raises(litellm.NotFoundError):
completion(
model="bedrock/bad_model",
messages=[
{
"role": "user",
"content": "What is the meaning of life",
}
],
)
@pytest.mark.parametrize(
"model",
[
"bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
],
)
def test_bedrock_cross_region_inference(model):
litellm.set_verbose = True
response = completion(
model=model,
messages=messages,
max_tokens=10,
temperature=0.1,
)
@pytest.mark.parametrize(
"model, expected_base_model",
[
(
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0",
"anthropic.claude-3-5-sonnet-20240620-v1:0",
),
],
)
def test_bedrock_get_base_model(model, expected_base_model):
from litellm.llms.bedrock.common_utils import BedrockModelInfo
assert BedrockModelInfo.get_base_model(model) == expected_base_model
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
def test_bedrock_converse_translation_tool_message():
from litellm.types.utils import ChatCompletionMessageToolCall, Function
litellm.set_verbose = True
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
{
"tool_call_id": "tooluse_DnqEmD5qR6y2-aJ-Xd05xw",
"role": "tool",
"name": "get_current_weather",
"content": [
{
"text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
"type": "text",
}
],
},
]
translated_msg = _bedrock_converse_messages_pt(
messages=messages, model="", llm_provider=""
)
print(translated_msg)
assert translated_msg == [
{
"role": "user",
"content": [
{
"text": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses"
},
{
"toolResult": {
"content": [
{
"text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}'
}
],
"toolUseId": "tooluse_DnqEmD5qR6y2-aJ-Xd05xw",
}
},
],
}
]
def test_base_aws_llm_get_credentials():
import time
import boto3
from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
start_time = time.time()
session = boto3.Session(
aws_access_key_id="test",
aws_secret_access_key="test2",
region_name="test3",
)
credentials = session.get_credentials().get_frozen_credentials()
end_time = time.time()
print(
"Total time for credentials - {}. Credentials - {}".format(
end_time - start_time, credentials
)
)
start_time = time.time()
credentials = BaseAWSLLM().get_credentials(
aws_access_key_id="test",
aws_secret_access_key="test2",
aws_region_name="test3",
)
end_time = time.time()
print(
"Total time for credentials - {}. Credentials - {}".format(
end_time - start_time, credentials.get_frozen_credentials()
)
)
def test_bedrock_completion_test_2():
litellm.set_verbose = True
data = {
"model": "bedrock/anthropic.claude-3-opus-20240229-v1:0",
"messages": [
{
"role": "system",
"content": "You are Claude Dev, a highly skilled software developer with extensive knowledge in many programming languages, frameworks, design patterns, and best practices.\n\n====\n \nCAPABILITIES\n\n- You can read and analyze code in various programming languages, and can write clean, efficient, and well-documented code.\n- You can debug complex issues and providing detailed explanations, offering architectural insights and design patterns.\n- You have access to tools that let you execute CLI commands on the user's computer, list files, view source code definitions, regex search, inspect websites, read and write files, and ask follow-up questions. These tools help you effectively accomplish a wide range of tasks, such as writing code, making edits or improvements to existing files, understanding the current state of a project, performing system operations, and much more.\n- When the user initially gives you a task, a recursive list of all filepaths in the current working directory ('/Users/hongbo-miao/Clouds/Git/hongbomiao.com') will be included in environment_details. This provides an overview of the project's file structure, offering key insights into the project from directory/file names (how developers conceptualize and organize their code) and file extensions (the language used). This can also guide decision-making on which files to explore further. If you need to further explore directories such as outside the current working directory, you can use the list_files tool. If you pass 'true' for the recursive parameter, it will list files recursively. Otherwise, it will list files at the top level, which is better suited for generic directories where you don't necessarily need the nested structure, like the Desktop.\n- You can use search_files to perform regex searches across files in a specified directory, outputting context-rich results that include surrounding lines. This is particularly useful for understanding code patterns, finding specific implementations, or identifying areas that need refactoring.\n- You can use the list_code_definition_names tool to get an overview of source code definitions for all files at the top level of a specified directory. This can be particularly useful when you need to understand the broader context and relationships between certain parts of the code. You may need to call this tool multiple times to understand various parts of the codebase related to the task.\n\t- For example, when asked to make edits or improvements you might analyze the file structure in the initial environment_details to get an overview of the project, then use list_code_definition_names to get further insight using source code definitions for files located in relevant directories, then read_file to examine the contents of relevant files, analyze the code and suggest improvements or make necessary edits, then use the write_to_file tool to implement changes. If you refactored code that could affect other parts of the codebase, you could use search_files to ensure you update other files as needed.\n- You can use the execute_command tool to run commands on the user's computer whenever you feel it can help accomplish the user's task. When you need to execute a CLI command, you must provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, since they are more flexible and easier to run. Interactive and long-running commands are allowed, since the commands are run in the user's VSCode terminal. The user may keep commands running in the background and you will be kept updated on their status along the way. Each command you execute is run in a new terminal instance.\n- You can use the inspect_site tool to capture a screenshot and console logs of the initial state of a website (including html files and locally running development servers) when you feel it is necessary in accomplishing the user's task. This tool may be useful at key stages of web development tasks-such as after implementing new features, making substantial changes, when troubleshooting issues, or to verify the result of your work. You can analyze the provided screenshot to ensure correct rendering or identify errors, and review console logs for runtime issues.\n\t- For example, if asked to add a component to a react website, you might create the necessary files, use execute_command to run the site locally, then use inspect_site to verify there are no runtime errors on page load.\n\n====\n\nRULES\n\n- Your current working directory is: /Users/hongbo-miao/Clouds/Git/hongbomiao.com\n- You cannot `cd` into a different directory to complete a task. You are stuck operating from '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', so be sure to pass in the correct 'path' parameter when using tools that require a path.\n- Do not use the ~ character or $HOME to refer to the home directory.\n- Before using the execute_command tool, you must first think about the SYSTEM INFORMATION context provided to understand the user's environment and tailor your commands to ensure they are compatible with their system. You must also consider if the command you need to run should be executed in a specific directory outside of the current working directory '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', and if so prepend with `cd`'ing into that directory && then executing the command (as one command since you are stuck operating from '/Users/hongbo-miao/Clouds/Git/hongbomiao.com'). For example, if you needed to run `npm install` in a project outside of '/Users/hongbo-miao/Clouds/Git/hongbomiao.com', you would need to prepend with a `cd` i.e. pseudocode for this would be `cd (path to project) && (command, in this case npm install)`.\n- When using the search_files tool, craft your regex patterns carefully to balance specificity and flexibility. Based on the user's task you may use it to find code patterns, TODO comments, function definitions, or any text-based information across the project. The results include context, so analyze the surrounding code to better understand the matches. Leverage the search_files tool in combination with other tools for more comprehensive analysis. For example, use it to find specific code patterns, then use read_file to examine the full context of interesting matches before using write_to_file to make informed changes.\n- When creating a new project (such as an app, website, or any software project), organize all new files within a dedicated project directory unless the user specifies otherwise. Use appropriate file paths when writing files, as the write_to_file tool will automatically create any necessary directories. Structure the project logically, adhering to best practices for the specific type of project being created. Unless otherwise specified, new projects should be easily run without additional setup, for example most projects can be built in HTML, CSS, and JavaScript - which you can open in a browser.\n- You must try to use multiple tools in one request when possible. For example if you were to create a website, you would use the write_to_file tool to create the necessary files with their appropriate contents all at once. Or if you wanted to analyze a project, you could use the read_file tool multiple times to look at several key files. This will help you accomplish the user's task more efficiently.\n- Be sure to consider the type of project (e.g. Python, JavaScript, web application) when determining the appropriate structure and files to include. Also consider what files may be most relevant to accomplishing the task, for example looking at a project's manifest file would help you understand the project's dependencies, which you could incorporate into any code you write.\n- When making changes to code, always consider the context in which the code is being used. Ensure that your changes are compatible with the existing codebase and that they follow the project's coding standards and best practices.\n- Do not ask for more information than necessary. Use the tools provided to accomplish the user's request efficiently and effectively. When you've completed your task, you must use the attempt_completion tool to present the result to the user. The user may provide feedback, which you can use to make improvements and try again.\n- You are only allowed to ask the user questions using the ask_followup_question tool. Use this tool only when you need additional details to complete a task, and be sure to use a clear and concise question that will help you move forward with the task. However if you can use the available tools to avoid having to ask the user questions, you should do so. For example, if the user mentions a file that may be in an outside directory like the Desktop, you should use the list_files tool to list the files in the Desktop and check if the file they are talking about is there, rather than asking the user to provide the file path themselves.\n- When executing commands, if you don't see the expected output, assume the terminal executed the command successfully and proceed with the task. The user's terminal may be unable to stream the output back properly. If you absolutely need to see the actual terminal output, use the ask_followup_question tool to request the user to copy and paste it back to you.\n- Your goal is to try to accomplish the user's task, NOT engage in a back and forth conversation.\n- NEVER end completion_attempt with a question or request to engage in further conversation! Formulate the end of your result in a way that is final and does not require further input from the user. \n- NEVER start your responses with affirmations like \"Certainly\", \"Okay\", \"Sure\", \"Great\", etc. You should NOT be conversational in your responses, but rather direct and to the point.\n- Feel free to use markdown as much as you'd like in your responses. When using code blocks, always include a language specifier.\n- When presented with images, utilize your vision capabilities to thoroughly examine them and extract meaningful information. Incorporate these insights into your thought process as you accomplish the user's task.\n- At the end of each user message, you will automatically receive environment_details. This information is not written by the user themselves, but is auto-generated to provide potentially relevant context about the project structure and environment. While this information can be valuable for understanding the project context, do not treat it as a direct part of the user's request or response. Use it to inform your actions and decisions, but don't assume the user is explicitly asking about or referring to this information unless they clearly do so in their message. When using environment_details, explain your actions clearly to ensure the user understands, as they may not be aware of these details.\n- CRITICAL: When editing files with write_to_file, ALWAYS provide the COMPLETE file content in your response. This is NON-NEGOTIABLE. Partial updates or placeholders like '// rest of code unchanged' are STRICTLY FORBIDDEN. You MUST include ALL parts of the file, even if they haven't been modified. Failure to do so will result in incomplete or broken code, severely impacting the user's project.\n\n====\n\nOBJECTIVE\n\nYou accomplish a given task iteratively, breaking it down into clear steps and working through them methodically.\n\n1. Analyze the user's task and set clear, achievable goals to accomplish it. Prioritize these goals in a logical order.\n2. Work through these goals sequentially, utilizing available tools as necessary. Each goal should correspond to a distinct step in your problem-solving process. It is okay for certain steps to take multiple iterations, i.e. if you need to create many files, it's okay to create a few files at a time as each subsequent iteration will keep you informed on the work completed and what's remaining. \n3. Remember, you have extensive capabilities with access to a wide range of tools that can be used in powerful and clever ways as necessary to accomplish each goal. Before calling a tool, do some analysis within <thinking></thinking> tags. First, analyze the file structure provided in environment_details to gain context and insights for proceeding effectively. Then, think about which of the provided tools is the most relevant tool to accomplish the user's task. Next, go through each of the required parameters of the relevant tool and determine if the user has directly provided or given enough information to infer a value. When deciding if the parameter can be inferred, carefully consider all the context to see if it supports a specific value. If all of the required parameters are present or can be reasonably inferred, close the thinking tag and proceed with the tool call. BUT, if one of the values for a required parameter is missing, DO NOT invoke the function (not even with fillers for the missing params) and instead, ask the user to provide the missing parameters using the ask_followup_question tool. DO NOT ask for more information on optional parameters if it is not provided.\n4. Once you've completed the user's task, you must use the attempt_completion tool to present the result of the task to the user. You may also provide a CLI command to showcase the result of your task; this can be particularly useful for web development tasks, where you can run e.g. `open index.html` to show the website you've built.\n5. The user may provide feedback, which you can use to make improvements and try again. But DO NOT continue in pointless back and forth conversations, i.e. don't end your responses with questions or offers for further assistance.\n\n====\n\nSYSTEM INFORMATION\n\nOperating System: macOS\nDefault Shell: /bin/zsh\nHome Directory: /Users/hongbo-miao\nCurrent Working Directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com\n",
},
{
"role": "user",
"content": [
{"type": "text", "text": "<task>\nHello\n</task>"},
{
"type": "text",
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n../../../.vscode/extensions/continue.continue-0.8.52-darwin-arm64/continue_tutorial.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>",
},
],
},
{
"role": "assistant",
"content": '<thinking>\nThe user has simply said "Hello" without providing any specific task or request. There is not enough information to determine which tools would be relevant or necessary to respond.\n\nThe environment details show a list of files and directories in the current working directory, but without a clear task from the user, it\'s not apparent which of these, if any, are relevant.\n\nSince no specific request has been made, there are no required parameters to analyze for any of the available tools. Asking a follow-up question seems to be the most appropriate action to get clarification on what the user needs help with.\n</thinking>',
"tool_calls": [
{
"id": "tooluse_OPznXwZaRzCfPaQF2dxRSA",
"type": "function",
"function": {
"name": "ask_followup_question",
"arguments": '{"question":"Hello! How can I assist you today? Do you have a specific task or request you need help with? I\'d be happy to help, but I\'ll need some more details on what you\'re looking to accomplish."}',
},
}
],
},
{
"role": "tool",
"tool_call_id": "tooluse_OPznXwZaRzCfPaQF2dxRSA",
"content": "<answer>\nExplain this file\n</answer>",
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n../../../.vscode/extensions/continue.continue-0.8.52-darwin-arm64/continue_tutorial.py\n</environment_details>",
}
],
},
],
"tools": [
{
"type": "function",
"function": {
"name": "execute_command",
"description": "Execute a CLI command on the system. Use this when you need to perform system operations or run specific commands to accomplish any step in the user's task. You must tailor your command to the user's system and provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, as they are more flexible and easier to run. Commands will be executed in the current working directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The CLI command to execute. This should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
}
},
"required": ["command"],
},
},
},
{
"type": "function",
"function": {
"name": "read_file",
"description": "Read the contents of a file at the specified path. Use this when you need to examine the contents of an existing file, for example to analyze code, review text files, or extract information from configuration files. Automatically extracts raw text from PDF and DOCX files. May not be suitable for other types of binary files, as it returns the raw content as a string.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the file to read (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
}
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "write_to_file",
"description": "Write content to a file at the specified path. If the file exists, it will be overwritten with the provided content. If the file doesn't exist, it will be created. Always provide the full intended content of the file, without any truncation. This tool will automatically create any directories needed to write the file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the file to write to (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
},
"content": {
"type": "string",
"description": "The full content to write to the file.",
},
},
"required": ["path", "content"],
},
},
},
{
"type": "function",
"function": {
"name": "search_files",
"description": "Perform a regex search across files in a specified directory, providing context-rich results. This tool searches for patterns or specific content across multiple files, displaying each match with encapsulating context.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory to search in (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com). This directory will be recursively searched.",
},
"regex": {
"type": "string",
"description": "The regular expression pattern to search for. Uses Rust regex syntax.",
},
"filePattern": {
"type": "string",
"description": "Optional glob pattern to filter files (e.g., '*.ts' for TypeScript files). If not provided, it will search all files (*).",
},
},
"required": ["path", "regex"],
},
},
},
{
"type": "function",
"function": {
"name": "list_files",
"description": "List files and directories within the specified directory. If recursive is true, it will list all files and directories recursively. If recursive is false or not provided, it will only list the top-level contents.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory to list contents for (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
},
"recursive": {
"type": "string",
"enum": ["true", "false"],
"description": "Whether to list files recursively. Use 'true' for recursive listing, 'false' or omit for top-level only.",
},
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "list_code_definition_names",
"description": "Lists definition names (classes, functions, methods, etc.) used in source code files at the top level of the specified directory. This tool provides insights into the codebase structure and important constructs, encapsulating high-level concepts and relationships that are crucial for understanding the overall architecture.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com) to list top level source code definitions for",
}
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "inspect_site",
"description": "Captures a screenshot and console logs of the initial state of a website. This tool navigates to the specified URL, takes a screenshot of the entire page as it appears immediately after loading, and collects any console logs or errors that occur during page load. It does not interact with the page or capture any state changes after the initial load.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the site to inspect. This should be a valid URL including the protocol (e.g. http://localhost:3000/page, file:///path/to/file.html, etc.)",
}
},
"required": ["url"],
},
},
},
{
"type": "function",
"function": {
"name": "ask_followup_question",
"description": "Ask the user a question to gather additional information needed to complete the task. This tool should be used when you encounter ambiguities, need clarification, or require more details to proceed effectively. It allows for interactive problem-solving by enabling direct communication with the user. Use this tool judiciously to maintain a balance between gathering necessary information and avoiding excessive back-and-forth.",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to ask the user. This should be a clear, specific question that addresses the information you need.",
}
},
"required": ["question"],
},
},
},
{
"type": "function",
"function": {
"name": "attempt_completion",
"description": "Once you've completed the task, use this tool to present the result to the user. Optionally you may provide a CLI command to showcase the result of your work, but avoid using commands like 'echo' or 'cat' that merely print text. They may respond with feedback if they are not satisfied with the result, which you can use to make improvements and try again.",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "A CLI command to execute to show a live demo of the result to the user. For example, use 'open index.html' to display a created website. This command should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
},
"result": {
"type": "string",
"description": "The result of the task. Formulate this result in a way that is final and does not require further input from the user. Don't end your result with questions or offers for further assistance.",
},
},
"required": ["result"],
},
},
},
],
}
from litellm.llms.bedrock.chat.converse_transformation import AmazonConverseConfig
request = AmazonConverseConfig()._transform_request(
model=data["model"],
messages=data["messages"],
optional_params={"tools": data["tools"]},
litellm_params={},
)
"""
Iterate through the messages
ensure 'role' is always alternating b/w 'user' and 'assistant'
"""
_messages = request["messages"]
for i in range(len(_messages) - 1):
assert _messages[i]["role"] != _messages[i + 1]["role"]
def test_bedrock_completion_test_3():
"""
Check if content in tool result is formatted correctly
"""
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
Message(
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
index=1,
function=Function(
arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
name="get_current_weather",
),
id="tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
type="function",
)
],
function_call=None,
).model_dump(),
{
"tool_call_id": "tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
},
]
transformed_messages = _bedrock_converse_messages_pt(
messages=messages, model="", llm_provider=""
)
print(transformed_messages)
assert transformed_messages[-1]["role"] == "user"
assert transformed_messages[-1]["content"] == [
{
"toolResult": {
"content": [
{
"text": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}'
}
],
"toolUseId": "tooluse_EF8PwJ1dSMSh6tLGKu9VdA",
}
}
]
@pytest.mark.skip(reason="Skipping this test as Bedrock now supports this behavior.")
@pytest.mark.parametrize("modify_params", [True, False])
def test_bedrock_completion_test_4(modify_params):
litellm.set_verbose = True
litellm.modify_params = modify_params
data = {
"model": "anthropic.claude-3-opus-20240229-v1:0",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "<task>\nWhat is this file?\n</task>"},
{
"type": "text",
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>",
},
],
},
{
"role": "assistant",
"content": '<thinking>\nThe user is asking about a specific file: main.py. Based on the environment details provided, this file is located in the computer-vision/hm-open3d/src/ directory and is currently open in a VSCode tab.\n\nTo answer the question of what this file is, the most relevant tool would be the read_file tool. This will allow me to examine the contents of main.py to determine its purpose.\n\nThe read_file tool requires the "path" parameter. I can infer this path based on the environment details:\npath: "computer-vision/hm-open3d/src/main.py"\n\nSince I have the necessary parameter, I can proceed with calling the read_file tool.\n</thinking>',
"tool_calls": [
{
"id": "tooluse_qCt-KEyWQlWiyHl26spQVA",
"type": "function",
"function": {
"name": "read_file",
"arguments": '{"path":"computer-vision/hm-open3d/src/main.py"}',
},
}
],
},
{
"role": "tool",
"tool_call_id": "tooluse_qCt-KEyWQlWiyHl26spQVA",
"content": 'import numpy as np\nimport open3d as o3d\n\n\ndef main():\n ply_point_cloud = o3d.data.PLYPointCloud()\n pcd = o3d.io.read_point_cloud(ply_point_cloud.path)\n print(pcd)\n print(np.asarray(pcd.points))\n\n demo_crop_data = o3d.data.DemoCropPointCloud()\n vol = o3d.visualization.read_selection_polygon_volume(\n demo_crop_data.cropped_json_path\n )\n chair = vol.crop_point_cloud(pcd)\n\n dists = pcd.compute_point_cloud_distance(chair)\n dists = np.asarray(dists)\n idx = np.where(dists > 0.01)[0]\n pcd_without_chair = pcd.select_by_index(idx)\n\n axis_aligned_bounding_box = chair.get_axis_aligned_bounding_box()\n axis_aligned_bounding_box.color = (1, 0, 0)\n\n oriented_bounding_box = chair.get_oriented_bounding_box()\n oriented_bounding_box.color = (0, 1, 0)\n\n o3d.visualization.draw_geometries(\n [pcd_without_chair, chair, axis_aligned_bounding_box, oriented_bounding_box],\n zoom=0.3412,\n front=[0.4, -0.2, -0.9],\n lookat=[2.6, 2.0, 1.5],\n up=[-0.10, -1.0, 0.2],\n )\n\n\nif __name__ == "__main__":\n main()\n',
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n</environment_details>",
}
],
},
],
"temperature": 0.2,
"tools": [
{
"type": "function",
"function": {
"name": "execute_command",
"description": "Execute a CLI command on the system. Use this when you need to perform system operations or run specific commands to accomplish any step in the user's task. You must tailor your command to the user's system and provide a clear explanation of what the command does. Prefer to execute complex CLI commands over creating executable scripts, as they are more flexible and easier to run. Commands will be executed in the current working directory: /Users/hongbo-miao/Clouds/Git/hongbomiao.com",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The CLI command to execute. This should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
}
},
"required": ["command"],
},
},
},
{
"type": "function",
"function": {
"name": "read_file",
"description": "Read the contents of a file at the specified path. Use this when you need to examine the contents of an existing file, for example to analyze code, review text files, or extract information from configuration files. Automatically extracts raw text from PDF and DOCX files. May not be suitable for other types of binary files, as it returns the raw content as a string.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the file to read (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
}
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "write_to_file",
"description": "Write content to a file at the specified path. If the file exists, it will be overwritten with the provided content. If the file doesn't exist, it will be created. Always provide the full intended content of the file, without any truncation. This tool will automatically create any directories needed to write the file.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the file to write to (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
},
"content": {
"type": "string",
"description": "The full content to write to the file.",
},
},
"required": ["path", "content"],
},
},
},
{
"type": "function",
"function": {
"name": "search_files",
"description": "Perform a regex search across files in a specified directory, providing context-rich results. This tool searches for patterns or specific content across multiple files, displaying each match with encapsulating context.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory to search in (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com). This directory will be recursively searched.",
},
"regex": {
"type": "string",
"description": "The regular expression pattern to search for. Uses Rust regex syntax.",
},
"filePattern": {
"type": "string",
"description": "Optional glob pattern to filter files (e.g., '*.ts' for TypeScript files). If not provided, it will search all files (*).",
},
},
"required": ["path", "regex"],
},
},
},
{
"type": "function",
"function": {
"name": "list_files",
"description": "List files and directories within the specified directory. If recursive is true, it will list all files and directories recursively. If recursive is false or not provided, it will only list the top-level contents.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory to list contents for (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com)",
},
"recursive": {
"type": "string",
"enum": ["true", "false"],
"description": "Whether to list files recursively. Use 'true' for recursive listing, 'false' or omit for top-level only.",
},
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "list_code_definition_names",
"description": "Lists definition names (classes, functions, methods, etc.) used in source code files at the top level of the specified directory. This tool provides insights into the codebase structure and important constructs, encapsulating high-level concepts and relationships that are crucial for understanding the overall architecture.",
"parameters": {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": "The path of the directory (relative to the current working directory /Users/hongbo-miao/Clouds/Git/hongbomiao.com) to list top level source code definitions for",
}
},
"required": ["path"],
},
},
},
{
"type": "function",
"function": {
"name": "inspect_site",
"description": "Captures a screenshot and console logs of the initial state of a website. This tool navigates to the specified URL, takes a screenshot of the entire page as it appears immediately after loading, and collects any console logs or errors that occur during page load. It does not interact with the page or capture any state changes after the initial load.",
"parameters": {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the site to inspect. This should be a valid URL including the protocol (e.g. http://localhost:3000/page, file:///path/to/file.html, etc.)",
}
},
"required": ["url"],
},
},
},
{
"type": "function",
"function": {
"name": "ask_followup_question",
"description": "Ask the user a question to gather additional information needed to complete the task. This tool should be used when you encounter ambiguities, need clarification, or require more details to proceed effectively. It allows for interactive problem-solving by enabling direct communication with the user. Use this tool judiciously to maintain a balance between gathering necessary information and avoiding excessive back-and-forth.",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to ask the user. This should be a clear, specific question that addresses the information you need.",
}
},
"required": ["question"],
},
},
},
{
"type": "function",
"function": {
"name": "attempt_completion",
"description": "Once you've completed the task, use this tool to present the result to the user. Optionally you may provide a CLI command to showcase the result of your work, but avoid using commands like 'echo' or 'cat' that merely print text. They may respond with feedback if they are not satisfied with the result, which you can use to make improvements and try again.",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "A CLI command to execute to show a live demo of the result to the user. For example, use 'open index.html' to display a created website. This command should be valid for the current operating system. Ensure the command is properly formatted and does not contain any harmful instructions.",
},
"result": {
"type": "string",
"description": "The result of the task. Formulate this result in a way that is final and does not require further input from the user. Don't end your result with questions or offers for further assistance.",
},
},
"required": ["result"],
},
},
},
],
"tool_choice": "auto",
}
if modify_params:
transformed_messages = _bedrock_converse_messages_pt(
messages=data["messages"], model="", llm_provider=""
)
expected_messages = [
{
"role": "user",
"content": [
{"text": "<task>\nWhat is this file?\n</task>"},
{
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n\n# Current Working Directory (/Users/hongbo-miao/Clouds/Git/hongbomiao.com) Files\n.ansible-lint\n.clang-format\n.cmakelintrc\n.dockerignore\n.editorconfig\n.gitignore\n.gitmodules\n.hadolint.yaml\n.isort.cfg\n.markdownlint-cli2.jsonc\n.mergify.yml\n.npmrc\n.nvmrc\n.prettierignore\n.rubocop.yml\n.ruby-version\n.ruff.toml\n.shellcheckrc\n.solhint.json\n.solhintignore\n.sqlfluff\n.sqlfluffignore\n.stylelintignore\n.yamllint.yaml\nCODE_OF_CONDUCT.md\ncommitlint.config.js\nGemfile\nGemfile.lock\nLICENSE\nlint-staged.config.js\nMakefile\nmiss_hit.cfg\nmypy.ini\npackage-lock.json\npackage.json\npoetry.lock\npoetry.toml\nprettier.config.js\npyproject.toml\nREADME.md\nrelease.config.js\nrenovate.json\nSECURITY.md\nstylelint.config.js\naerospace/\naerospace/air-defense-system/\naerospace/hm-aerosandbox/\naerospace/hm-openaerostruct/\naerospace/px4/\naerospace/quadcopter-pd-controller/\naerospace/simulate-satellite/\naerospace/simulated-and-actual-flights/\naerospace/toroidal-propeller/\nansible/\nansible/inventory.yaml\nansible/Makefile\nansible/requirements.yml\nansible/hm_macos_group/\nansible/hm_ubuntu_group/\nansible/hm_windows_group/\napi-go/\napi-go/buf.yaml\napi-go/go.mod\napi-go/go.sum\napi-go/Makefile\napi-go/api/\napi-go/build/\napi-go/cmd/\napi-go/config/\napi-go/internal/\napi-node/\napi-node/.env.development\napi-node/.env.development.local.example\napi-node/.env.development.local.example.docker\napi-node/.env.production\napi-node/.env.production.local.example\napi-node/.env.test\napi-node/.eslintignore\napi-node/.eslintrc.js\napi-node/.npmrc\napi-node/.nvmrc\napi-node/babel.config.js\napi-node/docker-compose.cypress.yaml\napi-node/docker-compose.development.yaml\napi-node/Dockerfile\napi-node/Dockerfile.development\napi-node/jest.config.js\napi-node/Makefile\napi-node/package-lock.json\napi-node/package.json\napi-node/Procfile\napi-node/stryker.conf.js\napi-node/tsconfig.json\napi-node/bin/\napi-node/postgres/\napi-node/scripts/\napi-node/src/\napi-python/\napi-python/.flaskenv\napi-python/docker-entrypoint.sh\napi-python/Dockerfile\napi-python/Makefile\napi-python/poetry.lock\napi-python/poetry.toml\napi-python/pyproject.toml\napi-python/flaskr/\nasterios/\nasterios/led-blinker/\nauthorization/\nauthorization/hm-opal-client/\nauthorization/ory-hydra/\nautomobile/\nautomobile/build-map-by-lidar-point-cloud/\nautomobile/detect-lane-by-lidar-point-cloud/\nbin/\nbin/clean.sh\nbin/count_code_lines.sh\nbin/lint_javascript_fix.sh\nbin/lint_javascript.sh\nbin/set_up.sh\nbiology/\nbiology/compare-nucleotide-sequences/\nbusybox/\nbusybox/Makefile\ncaddy/\ncaddy/Caddyfile\ncaddy/Makefile\ncaddy/bin/\ncloud-computing/\ncloud-computing/hm-ray/\ncloud-computing/hm-skypilot/\ncloud-cost/\ncloud-cost/komiser/\ncloud-infrastructure/\ncloud-infrastructure/hm-pulumi/\ncloud-infrastructure/karpenter/\ncloud-infrastructure/terraform/\ncloud-platform/\ncloud-platform/aws/\ncloud-platform/google-cloud/\ncloud-security/\ncloud-security/hm-prowler/\ncomputational-fluid-dynamics/\ncomputational-fluid-dynamics/matlab/\ncomputational-fluid-dynamics/openfoam/\ncomputer-vision/\ncomputer-vision/hm-open3d/\ncomputer-vision/hm-pyvista/\ndata-analytics/\ndata-analytics/hm-geopandas/\ndata-distribution-service/\ndata-distribution-service/dummy_test.py\ndata-distribution-service/hm_message.idl\ndata-distribution-service/hm_message.xml\ndata-distribution-service/Makefile\ndata-distribution-service/poetry.lock\ndata-distribution-service/poetry.toml\ndata-distribution-service/publish.py\ndata-ingestion/\ndata-orchestration/\ndata-processing/\ndata-storage/\ndata-transformation/\ndata-visualization/\ndesktop-qt/\nembedded/\nethereum/\ngit/\ngolang-migrate/\nhardware-in-the-loop/\nhasura-graphql-engine/\nhigh-performance-computing/\nhm-alpine/\nhm-kafka/\nhm-locust/\nhm-rust/\nhm-traefik/\nhm-xxhash/\nkubernetes/\nmachine-learning/\nmatlab/\nmobile/\nnetwork-programmability/\noperating-system/\nparallel-computing/\nphysics/\nquantum-computing/\nrclone/\nrestic/\nreverse-engineering/\nrobotics/\nsubmodules/\ntrino/\nvagrant/\nvalgrind/\nvhdl/\nvim/\nweb/\nweb-cypress/\nwireless-network/\n\n(File list truncated. Use list_files on specific subdirectories if you need to explore further.)\n</environment_details>"
},
],
},
{
"role": "assistant",
"content": [
{
"text": """<thinking>\nThe user is asking about a specific file: main.py. Based on the environment details provided, this file is located in the computer-vision/hm-open3d/src/ directory and is currently open in a VSCode tab.\n\nTo answer the question of what this file is, the most relevant tool would be the read_file tool. This will allow me to examine the contents of main.py to determine its purpose.\n\nThe read_file tool requires the "path" parameter. I can infer this path based on the environment details:\npath: "computer-vision/hm-open3d/src/main.py"\n\nSince I have the necessary parameter, I can proceed with calling the read_file tool.\n</thinking>"""
},
{
"toolUse": {
"input": {"path": "computer-vision/hm-open3d/src/main.py"},
"name": "read_file",
"toolUseId": "tooluse_qCt-KEyWQlWiyHl26spQVA",
}
},
],
},
{
"role": "user",
"content": [
{
"toolResult": {
"content": [
{
"text": 'import numpy as np\nimport open3d as o3d\n\n\ndef main():\n ply_point_cloud = o3d.data.PLYPointCloud()\n pcd = o3d.io.read_point_cloud(ply_point_cloud.path)\n print(pcd)\n print(np.asarray(pcd.points))\n\n demo_crop_data = o3d.data.DemoCropPointCloud()\n vol = o3d.visualization.read_selection_polygon_volume(\n demo_crop_data.cropped_json_path\n )\n chair = vol.crop_point_cloud(pcd)\n\n dists = pcd.compute_point_cloud_distance(chair)\n dists = np.asarray(dists)\n idx = np.where(dists > 0.01)[0]\n pcd_without_chair = pcd.select_by_index(idx)\n\n axis_aligned_bounding_box = chair.get_axis_aligned_bounding_box()\n axis_aligned_bounding_box.color = (1, 0, 0)\n\n oriented_bounding_box = chair.get_oriented_bounding_box()\n oriented_bounding_box.color = (0, 1, 0)\n\n o3d.visualization.draw_geometries(\n [pcd_without_chair, chair, axis_aligned_bounding_box, oriented_bounding_box],\n zoom=0.3412,\n front=[0.4, -0.2, -0.9],\n lookat=[2.6, 2.0, 1.5],\n up=[-0.10, -1.0, 0.2],\n )\n\n\nif __name__ == "__main__":\n main()\n'
}
],
"toolUseId": "tooluse_qCt-KEyWQlWiyHl26spQVA",
}
}
],
},
{"role": "assistant", "content": [{"text": "Please continue."}]},
{
"role": "user",
"content": [
{
"text": "<environment_details>\n# VSCode Visible Files\ncomputer-vision/hm-open3d/src/main.py\n\n# VSCode Open Tabs\ncomputer-vision/hm-open3d/src/main.py\n</environment_details>"
}
],
},
]
assert transformed_messages == expected_messages
else:
with pytest.raises(Exception) as e:
litellm.completion(**data)
assert "litellm.modify_params" in str(e.value)
def test_bedrock_context_window_error():
with pytest.raises(litellm.ContextWindowExceededError) as e:
litellm.completion(
model="bedrock/claude-3-5-sonnet-20240620",
messages=[{"role": "user", "content": "Hello, world!"}],
mock_response=Exception("prompt is too long"),
)
def test_bedrock_converse_route():
litellm.set_verbose = True
litellm.completion(
model="bedrock/converse/us.amazon.nova-pro-v1:0",
messages=[{"role": "user", "content": "Hello, world!"}],
)
def test_bedrock_mapped_converse_models():
litellm.set_verbose = True
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
litellm.completion(
model="bedrock/us.amazon.nova-pro-v1:0",
messages=[{"role": "user", "content": "Hello, world!"}],
)
def test_bedrock_base_model_helper():
from litellm.llms.bedrock.common_utils import BedrockModelInfo
model = "us.amazon.nova-pro-v1:0"
base_model = BedrockModelInfo.get_base_model(model)
assert base_model == "amazon.nova-pro-v1:0"
assert (
BedrockModelInfo.get_base_model(
"invoke/anthropic.claude-3-5-sonnet-20241022-v2:0"
)
== "anthropic.claude-3-5-sonnet-20241022-v2:0"
)
@pytest.mark.parametrize(
"model,expected_route",
[
# Test explicit route prefixes
("invoke/anthropic.claude-3-sonnet-20240229-v1:0", "invoke"),
("converse/anthropic.claude-3-sonnet-20240229-v1:0", "converse"),
("converse_like/anthropic.claude-3-sonnet-20240229-v1:0", "converse_like"),
# Test models in BEDROCK_CONVERSE_MODELS list
("anthropic.claude-3-5-haiku-20241022-v1:0", "converse"),
("anthropic.claude-v2", "converse"),
("meta.llama3-70b-instruct-v1:0", "converse"),
("mistral.mistral-large-2407-v1:0", "converse"),
# Test models with region prefixes
("us.anthropic.claude-3-sonnet-20240229-v1:0", "converse"),
("us.meta.llama3-70b-instruct-v1:0", "converse"),
# Test default case (should return "invoke")
("amazon.titan-text-express-v1", "invoke"),
("cohere.command-text-v14", "invoke"),
("cohere.command-r-v1:0", "invoke"),
],
)
def test_bedrock_route_detection(model, expected_route):
"""Test all scenarios for BedrockModelInfo.get_bedrock_route"""
from litellm.llms.bedrock.common_utils import BedrockModelInfo
route = BedrockModelInfo.get_bedrock_route(model)
assert (
route == expected_route
), f"Expected route '{expected_route}' for model '{model}', but got '{route}'"
@pytest.mark.parametrize(
"messages, expected_cache_control",
[
(
[ # test system prompt cache
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are an AI assistant tasked with analyzing legal documents.",
},
{
"type": "text",
"text": "Here is the full text of a complex legal agreement",
"cache_control": {"type": "ephemeral"},
},
],
},
{
"role": "user",
"content": "what are the key terms and conditions in this agreement?",
},
],
True,
),
(
[ # test user prompt cache
{
"role": "user",
"content": "what are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
},
],
True,
),
],
)
def test_bedrock_prompt_caching_message(messages, expected_cache_control):
import litellm
import json
transformed_messages = litellm.AmazonConverseConfig()._transform_request(
model="bedrock/anthropic.claude-3-5-haiku-20241022-v1:0",
messages=messages,
optional_params={},
litellm_params={},
)
if expected_cache_control:
assert "cachePoint" in json.dumps(transformed_messages)
else:
assert "cachePoint" not in json.dumps(transformed_messages)
@pytest.mark.parametrize(
"model, expected_supports_tool_call",
[
("bedrock/us.amazon.nova-pro-v1:0", True),
("bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0", True),
("bedrock/mistral.mistral-7b-instruct-v0.1:0", True),
("bedrock/meta.llama3-1-8b-instruct:0", True),
("bedrock/meta.llama3-2-70b-instruct:0", True),
("bedrock/meta.llama3-3-70b-instruct-v1:0", True),
("bedrock/amazon.titan-embed-text-v1:0", False),
],
)
def test_bedrock_supports_tool_call(model, expected_supports_tool_call):
supported_openai_params = (
litellm.AmazonConverseConfig().get_supported_openai_params(model=model)
)
if expected_supports_tool_call:
assert "tools" in supported_openai_params
else:
assert "tools" not in supported_openai_params
class TestBedrockConverseChatCrossRegion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
return {
"model": "bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
def test_prompt_caching(self):
"""
Remove override once we have access to Bedrock prompt caching
"""
pass
def test_completion_cost(self):
"""
Test if region models info is correctly used for cost calculation. Using the base model info for cost calculation.
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
bedrock_model = "us.anthropic.claude-3-5-sonnet-20241022-v2:0"
litellm.model_cost.pop(bedrock_model, None)
model = f"bedrock/{bedrock_model}"
litellm.set_verbose = True
response = litellm.completion(
model=model,
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
cost = completion_cost(response)
assert cost > 0
class TestBedrockConverseAnthropicUnitTests(BaseAnthropicChatTest):
def get_base_completion_call_args(self) -> dict:
return {
"model": "bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0",
}
def get_base_completion_call_args_with_thinking(self) -> dict:
return {
"model": "bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"thinking": {"type": "enabled", "budget_tokens": 16000},
}
class TestBedrockConverseChatNormal(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
return {
"model": "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
"aws_region_name": "us-east-1",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
class TestBedrockConverseNovaTestSuite(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
return {
"model": "bedrock/us.amazon.nova-lite-v1:0",
"aws_region_name": "us-east-1",
}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
def test_prompt_caching(self):
"""
TODO: Ensure this test passes our base llm test suite
"""
class TestBedrockRerank(BaseLLMRerankTest):
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.BEDROCK
def get_base_rerank_call_args(self) -> dict:
return {
"model": "bedrock/arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0",
}
class TestBedrockCohereRerank(BaseLLMRerankTest):
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.BEDROCK
def get_base_rerank_call_args(self) -> dict:
return {
"model": "bedrock/arn:aws:bedrock:us-west-2::foundation-model/cohere.rerank-v3-5:0",
}
@pytest.mark.parametrize(
"messages, continue_message_index",
[
(
[
{"role": "user", "content": [{"type": "text", "text": ""}]},
{"role": "assistant", "content": [{"type": "text", "text": "Hello!"}]},
],
0,
),
(
[
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
{"role": "assistant", "content": [{"type": "text", "text": " "}]},
],
1,
),
],
)
def test_bedrock_empty_content_handling(messages, continue_message_index):
"""
Test that empty content in messages is handled correctly with default messages
"""
# Test with default behavior (modify_params=True)
litellm.modify_params = True
formatted_messages = _bedrock_converse_messages_pt(
messages=messages,
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
print(formatted_messages)
# Verify assistant message with default text was inserted
assert formatted_messages[0]["role"] == "user"
assert formatted_messages[1]["role"] == "assistant"
assert (
formatted_messages[continue_message_index]["content"][0]["text"]
== "Please continue."
)
def test_bedrock_custom_continue_message():
"""
Test that custom continue messages are used when provided
"""
messages = [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
{"role": "assistant", "content": [{"type": "text", "text": " "}]},
]
custom_continue = {
"role": "assistant",
"content": [{"text": "Custom continue message", "type": "text"}],
}
formatted_messages = _bedrock_converse_messages_pt(
messages=messages,
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
assistant_continue_message=custom_continue,
)
# Verify custom message was used
assert formatted_messages[1]["role"] == "assistant"
assert formatted_messages[1]["content"][0]["text"] == "Custom continue message"
def test_bedrock_no_default_message():
"""
Test that empty content is handled correctly when modify_params=False
"""
messages = [
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": ""},
{"role": "user", "content": "Hi again"},
{"role": "assistant", "content": "Valid response"},
]
litellm.modify_params = False
formatted_messages = _bedrock_converse_messages_pt(
messages=messages,
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
# Verify empty message is present and valid message remains
assistant_messages = [
msg for msg in formatted_messages if msg["role"] == "assistant"
]
assert len(assistant_messages) == 2 # Both empty and valid messages present
assert assistant_messages[0]["content"][0]["text"] == "" # First message is empty
assert (
assistant_messages[1]["content"][0]["text"] == "Valid response"
) # Second message is valid
@pytest.mark.parametrize("top_k_param", ["top_k", "topK"])
def test_bedrock_nova_topk(top_k_param):
litellm.set_verbose = True
data = {
"model": "bedrock/us.amazon.nova-pro-v1:0",
"messages": [{"role": "user", "content": "Hello, world!"}],
top_k_param: 10,
}
original_transform = litellm.AmazonConverseConfig()._transform_request
captured_data = None
def mock_transform(*args, **kwargs):
nonlocal captured_data
result = original_transform(*args, **kwargs)
captured_data = result
return result
with patch(
"litellm.AmazonConverseConfig._transform_request", side_effect=mock_transform
):
litellm.completion(**data)
# Assert that additionalRequestParameters exists and contains topK
assert "additionalModelRequestFields" in captured_data
assert "inferenceConfig" in captured_data["additionalModelRequestFields"]
assert (
captured_data["additionalModelRequestFields"]["inferenceConfig"]["topK"]
== 10
)
def test_bedrock_cross_region_inference(monkeypatch):
from litellm.llms.custom_httpx.http_handler import HTTPHandler
monkeypatch.setenv("LITELLM_LOCAL_MODEL_COST_MAP", "True")
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.add_known_models()
litellm.set_verbose = True
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
try:
completion(
model="bedrock/us.meta.llama3-3-70b-instruct-v1:0",
messages=[{"role": "user", "content": "Hello, world!"}],
client=client,
)
except Exception as e:
print(e)
assert (
mock_post.call_args.kwargs["url"]
== "https://bedrock-runtime.us-west-2.amazonaws.com/model/us.meta.llama3-3-70b-instruct-v1%3A0/converse"
)
def test_bedrock_empty_content_real_call():
completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "",
},
{"type": "text", "text": "Hey, how's it going?"},
],
}
],
)
def test_bedrock_process_empty_text_blocks():
from litellm.litellm_core_utils.prompt_templates.factory import (
process_empty_text_blocks,
)
message = {
"message": {"role": "assistant", "content": [{"type": "text", "text": " "}]},
"assistant_continue_message": None,
}
modified_message = process_empty_text_blocks(**message)
assert modified_message["content"][0]["text"] == "Please continue."
@pytest.mark.skip(reason="Skipping test due to bedrock changing their response schema support. Come back to this.")
def test_nova_optional_params_tool_choice():
try:
litellm.drop_params = True
litellm.set_verbose = True
litellm.completion(
messages=[
{"role": "user", "content": "A WWII competitive game for 4-8 players"}
],
model="bedrock/us.amazon.nova-pro-v1:0",
temperature=0.3,
tools=[
{
"type": "function",
"function": {
"name": "GameDefinition",
"description": "Correctly extracted `GameDefinition` with all the required parameters with correct types",
"parameters": {
"$defs": {
"TurnDurationEnum": {
"enum": ["action", "encounter", "battle", "operation"],
"title": "TurnDurationEnum",
"type": "string",
}
},
"properties": {
"id": {
"anyOf": [{"type": "integer"}, {"type": "null"}],
"default": None,
"title": "Id",
},
"prompt": {"title": "Prompt", "type": "string"},
"name": {"title": "Name", "type": "string"},
"description": {"title": "Description", "type": "string"},
"competitve": {"title": "Competitve", "type": "boolean"},
"players_min": {"title": "Players Min", "type": "integer"},
"players_max": {"title": "Players Max", "type": "integer"},
"turn_duration": {
"$ref": "#/$defs/TurnDurationEnum",
"description": "how long the passing of a turn should represent for a game at this scale",
},
},
"required": [
"competitve",
"description",
"name",
"players_max",
"players_min",
"prompt",
"turn_duration",
],
"type": "object",
},
},
}
],
tool_choice={"type": "function", "function": {"name": "GameDefinition"}},
)
except litellm.APIConnectionError:
pass
class TestBedrockEmbedding(BaseLLMEmbeddingTest):
def get_base_embedding_call_args(self) -> dict:
return {
"model": "bedrock/amazon.titan-embed-image-v1",
}
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.BEDROCK
def test_bedrock_image_embedding_transformation(self):
from litellm.llms.bedrock.embed.amazon_titan_multimodal_transformation import (
AmazonTitanMultimodalEmbeddingG1Config,
)
args = {
"input": "",
"inference_params": {},
}
transformed_request = (
AmazonTitanMultimodalEmbeddingG1Config()._transform_request(**args)
)
transformed_request[
"inputImage"
] == "iVBORw0KGgoAAAANSUhEUgAAAGQAAABkBAMAAACCzIhnAAAAG1BMVEURAAD///+ln5/h39/Dv79qX18uHx+If39MPz9oMSdmAAAACXBIWXMAAA7EAAAOxAGVKw4bAAABB0lEQVRYhe2SzWrEIBCAh2A0jxEs4j6GLDS9hqWmV5Flt0cJS+lRwv742DXpEjY1kOZW6HwHFZnPmVEBEARBEARB/jd0KYA/bcUYbPrRLh6amXHJ/K+ypMoyUaGthILzw0l+xI0jsO7ZcmCcm4ILd+QuVYgpHOmDmz6jBeJImdcUCmeBqQpuqRIbVmQsLCrAalrGpfoEqEogqbLTWuXCPCo+Ki1XGqgQ+jVVuhB8bOaHkvmYuzm/b0KYLWwoK58oFqi6XfxQ4Uz7d6WeKpna6ytUs5e8betMcqAv5YPC5EZB2Lm9FIn0/VP6R58+/GEY1X1egVoZ/3bt/EqF6malgSAIgiDIH+QL41409QMY0LMAAAAASUVORK5CYII="
@pytest.mark.asyncio
async def test_bedrock_image_url_sync_client():
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
import logging
from litellm import verbose_logger
verbose_logger.setLevel(level=logging.DEBUG)
litellm._turn_on_debug()
client = AsyncHTTPHandler()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
},
},
],
}
]
with patch.object(client, "post") as mock_post:
try:
await litellm.acompletion(
model="bedrock/us.amazon.nova-pro-v1:0",
messages=messages,
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
def test_bedrock_error_handling_streaming():
from litellm.llms.bedrock.chat.invoke_handler import (
AWSEventStreamDecoder,
BedrockError,
)
from unittest.mock import patch, Mock
event = Mock()
event.to_response_dict = Mock(
return_value={
"status_code": 400,
"headers": {
":exception-type": "serviceUnavailableException",
":content-type": "application/json",
":message-type": "exception",
},
"body": b'{"message":"Bedrock is unable to process your request."}',
}
)
decoder = AWSEventStreamDecoder(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
with pytest.raises(Exception) as e:
decoder._parse_message_from_event(event)
assert isinstance(e.value, BedrockError)
assert "Bedrock is unable to process your request." in e.value.message
assert e.value.status_code == 400
@pytest.mark.parametrize(
"image_url",
[
"https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf",
# "https://raw.githubusercontent.com/datasets/gdp/master/data/gdp.csv",
"https://www.cmu.edu/blackboard/files/evaluate/tests-example.xls",
"http://www.krishdholakia.com/",
# "https://raw.githubusercontent.com/datasets/sample-data/master/README.txt", # invalid url
"https://raw.githubusercontent.com/mdn/content/main/README.md",
],
)
@pytest.mark.flaky(retries=6, delay=2)
@pytest.mark.asyncio
async def test_bedrock_document_understanding(image_url):
from litellm import acompletion
litellm._turn_on_debug()
model = "bedrock/us.amazon.nova-pro-v1:0"
image_content = [
{"type": "text", "text": f"What's this file about?"},
{
"type": "image_url",
"image_url": image_url,
},
]
try:
response = await acompletion(
model=model,
messages=[{"role": "user", "content": image_content}],
)
assert response is not None
assert response.choices[0].message.content != ""
except litellm.ServiceUnavailableError as e:
pytest.skip("Skipping test due to ServiceUnavailableError")
def test_bedrock_custom_proxy():
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
try:
response = completion(
model="bedrock/converse_like/us.amazon.nova-pro-v1:0",
messages=[{"content": "Tell me a joke", "role": "user"}],
api_key="Token",
client=client,
api_base="https://some-api-url/models",
)
except Exception as e:
print(e)
print(mock_post.call_args.kwargs)
mock_post.assert_called_once()
assert mock_post.call_args.kwargs["url"] == "https://some-api-url/models"
assert mock_post.call_args.kwargs["headers"]["Authorization"] == "Bearer Token"
def test_bedrock_custom_deepseek():
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import json
litellm._turn_on_debug()
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
# Mock the response
mock_response = Mock()
mock_response.text = json.dumps(
{"generation": "Here's a joke...", "stop_reason": "stop"}
)
mock_response.status_code = 200
# Add required response attributes
mock_response.headers = {"Content-Type": "application/json"}
mock_response.json = lambda: json.loads(mock_response.text)
mock_post.return_value = mock_response
try:
response = completion(
model="bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n", # Updated to specify provider
messages=[{"role": "user", "content": "Tell me a joke"}],
max_tokens=100,
client=client,
)
# Print request details
print("\nRequest Details:")
print(f"URL: {mock_post.call_args.kwargs['url']}")
# Verify the URL
assert (
mock_post.call_args.kwargs["url"]
== "https://bedrock-runtime.us-east-1.amazonaws.com/model/arn%3Aaws%3Abedrock%3Aus-east-1%3A086734376398%3Aimported-model%2Fr4c4kewx2s0n/invoke"
)
# Verify the request body format
request_body = json.loads(mock_post.call_args.kwargs["data"])
print("request_body=", json.dumps(request_body, indent=4, default=str))
assert "prompt" in request_body
assert request_body["prompt"] == "Tell me a joke"
# follows the llama spec
assert request_body["max_gen_len"] == 100
except Exception as e:
print(f"Error: {str(e)}")
raise e
@pytest.mark.parametrize(
"model, expected_output",
[
("bedrock/anthropic.claude-3-sonnet-20240229-v1:0", {"top_k": 3}),
("bedrock/converse/us.amazon.nova-pro-v1:0", {"inferenceConfig": {"topK": 3}}),
("bedrock/meta.llama3-70b-instruct-v1:0", {}),
],
)
def test_handle_top_k_value_helper(model, expected_output):
assert (
litellm.AmazonConverseConfig()._handle_top_k_value(model, {"topK": 3})
== expected_output
)
assert (
litellm.AmazonConverseConfig()._handle_top_k_value(model, {"top_k": 3})
== expected_output
)
@pytest.mark.parametrize(
"model, expected_params",
[
("bedrock/anthropic.claude-3-sonnet-20240229-v1:0", {"top_k": 2}),
("bedrock/converse/us.amazon.nova-pro-v1:0", {"inferenceConfig": {"topK": 2}}),
("bedrock/meta.llama3-70b-instruct-v1:0", {}),
("bedrock/mistral.mistral-7b-instruct-v0:2", {}),
],
)
def test_bedrock_top_k_param(model, expected_params):
import json
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
mock_response = Mock()
if "mistral" in model:
mock_response.text = json.dumps(
{"outputs": [{"text": "Here's a joke...", "stop_reason": "stop"}]}
)
else:
mock_response.text = json.dumps(
{
"output": {
"message": {
"role": "assistant",
"content": [{"text": "Here's a joke..."}],
}
},
"usage": {"inputTokens": 12, "outputTokens": 6, "totalTokens": 18},
"stopReason": "stop",
}
)
mock_response.status_code = 200
# Add required response attributes
mock_response.headers = {"Content-Type": "application/json"}
mock_response.json = lambda: json.loads(mock_response.text)
mock_post.return_value = mock_response
litellm.completion(
model=model,
messages=[{"role": "user", "content": "Hello, world!"}],
top_k=2,
client=client,
)
data = json.loads(mock_post.call_args.kwargs["data"])
if "mistral" in model:
assert data["top_k"] == 2
else:
assert data["additionalModelRequestFields"] == expected_params
def test_bedrock_invoke_provider():
assert (
litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
"bedrock/invoke/us.anthropic.claude-3-5-sonnet-20240620-v1:0"
)
== "anthropic"
)
assert (
litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
"bedrock/us.anthropic.claude-3-5-sonnet-20240620-v1:0"
)
== "anthropic"
)
assert (
litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
"bedrock/llama/arn:aws:bedrock:us-east-1:086734376398:imported-model/r4c4kewx2s0n"
)
== "llama"
)
assert (
litellm.AmazonInvokeConfig().get_bedrock_invoke_provider(
"us.amazon.nova-pro-v1:0"
)
== "nova"
)
def test_bedrock_description_param():
from litellm import completion
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
with patch.object(client, "post") as mock_post:
try:
response = completion(
model="bedrock/us.amazon.nova-pro-v1:0",
messages=[
{"role": "user", "content": "What is the meaning of this poem?"}
],
response_format={
"type": "json_schema",
"json_schema": {
"name": "meaning_reasoning",
"description": "Find the meaning inside a poem",
"schema": {
"type": "object",
"properties": {"meaning": {"type": "string"}},
},
},
},
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
request_body = json.loads(mock_post.call_args.kwargs["data"])
request_body_str = json.dumps(request_body, indent=4, default=str)
print("request_body=", request_body_str)
assert (
"Find the meaning inside a poem" in request_body_str
) # assert description is passed
@pytest.mark.parametrize(
"sync_mode",
[
True,
False,
],
)
@pytest.mark.asyncio
async def test_bedrock_thinking_in_assistant_message(sync_mode):
litellm._turn_on_debug()
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
if sync_mode:
client = HTTPHandler()
else:
client = AsyncHTTPHandler()
params = {
"model": "bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
"messages": [
{
"role": "assistant",
"content": [
{
"type": "thinking",
"thinking": "Alright, let's get started with resolving this issue about implementing `__len__` for the Pipeline class in scikit-learn.\n\n### Step 1: Explore the repository structure to understand it better\n\nLet's first explore the repository structure to get a better understanding of the codebase:\n\n\nls -la /workspace/scikit-learn__scikit-learn__0.21\n\n\nThis will give us an overview of the top-level directories and files. From there, we can delve deeper into relevant parts of the code.\n\nLet's look at the main organization of the repository first, then we'll locate the Pipeline class, understand how it's currently implemented, and then add the `__len__` method to it.\n\nNext, let's look at the pipeline module, as the issue mentions `pipe[:len(pipe)]`, indicating that there is indexing support for Pipeline, but it lacks a `__len__` method.\n\nSince the issue mentions that Pipeline supports indexing but not `__len__`, I'll check the Pipeline class to understand its implementation.\n\nThe Pipeline class is likely to be in sklearn/pipeline.py or within a pipeline directory. Let's look for it:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nThis will help us locate the file containing the Pipeline class.\n\nOnce we've located the file, we'll examine it to understand:\n1. How indexing is currently implemented\n2. Where we need to add the `__len__` method\n3. How the length of a pipeline should be determined\n\nThen, we'll implement the `__len__` method, test our changes to ensure they fix the issue, and verify that our changes don't break existing functionality.\n\nLet's begin by exploring the repository.\n\n### Step 2: Reproduce the error\n\nAfter exploring the repository, I'll create a script to reproduce the error described in the issue. This script will use the code provided in the \"Steps/Code to Reproduce\" section of the issue description.\n\nThen I'll run the script to confirm the error occurs as described, which will help us understand what needs to be fixed.\n\n### Step 3: Fix the issue\n\nOnce I've understood the problem and located the relevant files, I'll modify the code to add the `__len__` method to the Pipeline class. This method should return the number of steps in the pipeline, which is consistent with what a user would expect when calling `len(pipe)`.\n\n### Step 4: Test the fix\n\nAfter implementing the fix, I'll rerun the reproduction script to verify that the error is resolved and `len(pipe)` works correctly.\n\n### Step 5: Consider edge cases\n\nI'll think about potential edge cases like:\n- Empty pipelines\n- Very long pipelines\n- Any other special cases where the `__len__` implementation might behave unexpectedly\n\nI'll add tests for these cases to ensure our implementation handles them correctly.\n\n### Step 6: Comprehensive testing\n\nI'll run the existing tests to ensure our changes don't break any existing functionality, and I'll also write additional tests to specifically test our new `__len__` method.\n\nLet's start with exploring the repository.\n\nLet's start by exploring the repository structure:\n\n\nls -la /workspace/scikit-learn__scikit-learn__0.21\n\n\nNow, let's find the Pipeline class:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nBased on the repository structure, let's look at the pipeline implementation:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's check if there are tests for the Pipeline class:\n\n\nfind /workspace/scikit-learn__scikit-learn__0.21 -name \"*pipeline*test*\" -type f | grep -v __pycache__ | grep -v \"\\.pyc$\"\n\n\nNow, let's create a script to reproduce the error. I'll create a file in the workspace directory and add the code from the issue description:\n\n\ncat > /workspace/reproduce_pipeline_len_error.py << 'EOF'\nfrom sklearn import svm\nfrom sklearn.datasets import samples_generator\nfrom sklearn.feature_selection import SelectKBest\nfrom sklearn.feature_selection import f_regression\nfrom sklearn.pipeline import Pipeline\n\n# generate some data to play with\nX, y = samples_generator.make_classification(\n n_informative=5, n_redundant=0, random_state=42)\n\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\n\nprint(\"Trying to get length of pipeline...\")\ntry:\n length = len(pipe)\n print(f\"Length of pipeline: {length}\")\nexcept Exception as e:\n print(f\"Error: {type(e).__name__}: {e}\")\nEOF\n\n\nLet's run this to confirm the error:\n\n\npython /workspace/reproduce_pipeline_len_error.py\n\n\nNow, let's implement the `__len__` method in the Pipeline class. First, I'll examine the Pipeline class to understand how it's structured and where to add the `__len__` method.\n\nFrom the error we saw above and looking at the pipeline.py file, we should add a `__len__` method to the Pipeline class.\n\nLet's modify the pipeline.py file:\n\n\ncp /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py /workspace/pipeline.py.backup\n\n\nNow, let's edit the file to add the `__len__` method:\n\n\nsed -n -e '/class Pipeline/,/^class /p' /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nThis will show us the Pipeline class definition so we can understand where to add the `__len__` method.\n\nBased on what we see, I'll add the `__len__` method to the Pipeline class:\n\n\nsed -i -e '/def __getitem__.*:/a\\\n def __len__(self):\\\n \"\"\"Returns the length of the Pipeline.\\\n\\\n Returns\\\n -------\\\n length : int\\\n The number of steps in the pipeline.\\\n \"\"\"\\\n return len(self.steps)\n' /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's verify that the changes were applied correctly:\n\n\ngrep -A 10 \"__len__\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nNow, let's run our script again to see if the error is fixed:\n\n\npython /workspace/reproduce_pipeline_len_error.py\n\n\nIf the error is fixed, let's test some edge cases by modifying our script:\n\n\ncat > /workspace/test_pipeline_len.py << 'EOF'\nfrom sklearn.pipeline import Pipeline\nfrom sklearn import svm\nfrom sklearn.feature_selection import SelectKBest, f_regression\nfrom sklearn.datasets import samples_generator\nfrom sklearn.preprocessing import StandardScaler\n\n# Test case 1: Normal pipeline\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nprint(f\"Length of normal pipeline: {len(pipe)}\")\n\n# Test case 2: Empty pipeline\nempty_pipe = Pipeline([])\nprint(f\"Length of empty pipeline: {len(empty_pipe)}\")\n\n# Test case 3: Long pipeline\nX, y = samples_generator.make_classification(\n n_informative=5, n_redundant=0, random_state=42)\n\nsteps = []\nfor i in range(10):\n steps.append((f'scaler_{i}', StandardScaler()))\nlong_pipe = Pipeline(steps)\nprint(f\"Length of long pipeline: {len(long_pipe)}\")\n\n# Test case 4: Slicing with len\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nsliced_pipe = pipe[:len(pipe)]\nprint(f\"Original pipe steps: {[name for name, _ in pipe.steps]}\")\nprint(f\"Sliced pipe steps: {[name for name, _ in sliced_pipe.steps]}\")\nEOF\n\n\nLet's run this test script:\n\n\npython /workspace/test_pipeline_len.py\n\n\nLet's also run the tests for the pipeline module to make sure we haven't broken anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest sklearn/tests/test_pipeline.py -v\n\n\nAfter testing the changes, let's update our script once more to test the edge case where we use `len(pipe)` in slicing:\n\n\ncat >> /workspace/test_pipeline_len.py << 'EOF'\n\n# Test case 5: Various slicing operations with len\npipe = Pipeline([\n ('step1', StandardScaler()),\n ('step2', SelectKBest(f_regression, k=5)),\n ('step3', svm.SVC(kernel='linear'))\n])\nprint(f\"\\nOriginal pipe length: {len(pipe)}\")\n\n# Slice from beginning to end\nslice1 = pipe[:len(pipe)]\nprint(f\"pipe[:len(pipe)] steps: {[name for name, _ in slice1.steps]}\")\n\n# Slice from beginning to middle\nslice2 = pipe[:len(pipe)//2]\nprint(f\"pipe[:len(pipe)//2] steps: {[name for name, _ in slice2.steps]}\")\n\n# Slice from middle to end\nslice3 = pipe[len(pipe)//2:]\nprint(f\"pipe[len(pipe)//2:] steps: {[name for name, _ in slice3.steps]}\")\n\n# Slice a subset in the middle\nif len(pipe) >= 3:\n slice4 = pipe[1:len(pipe)-1]\n print(f\"pipe[1:len(pipe)-1] steps: {[name for name, _ in slice4.steps]}\")\nEOF\n\n\nLet's run this updated script:\n\n\npython /workspace/test_pipeline_len.py\n\n\nLet's also check all the tests in the sklearn directory to ensure our changes don't break anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nBefore we conclude, let's verify that our changes to scikit-learn match the expected functionality:\n\n1. We have implemented the `__len__` method in the Pipeline class\n2. The method returns the number of steps in the pipeline\n3. We have tested that it works for normal, empty, and long pipelines\n4. We have also tested that slicing operations using `len(pipe)` work correctly\n\nSince the issue description mentioned that the repository already supports indexing but not `__len__`, we didn't have to implement indexing. We only needed to add the `__len__` method to make `len(pipe)` work, which we've done.\n\nOur changes are minimal and focused on solving the specific issue described.\n\nFurthermore, to ensure we've done a thorough job, let's run all sklearn tests to make sure we haven't broken anything:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest sklearn/tests/\n\n\nLet's check the full implementation of the Pipeline to understand where `__len__` fits in compared to other methods like `__getitem__`:\n\n\nhead -n 300 /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nLet's more specifically check the surrounding methods to ensure our addition fits well with the rest of the class:\n\n\ngrep -A 20 \"__getitem__\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/pipeline.py\n\n\nNow, let's also test our changes against the base commit a62775e99f2a5ea3d51db7160fad783f6cd8a4c5, as mentioned in the requirements:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngit status\n\n\nHmm, we don't have access to the git repository directly. Let's focus on thoroughly testing our changes then.\n\nLet's run the full test suite for the sklearn module to make sure our changes don't break any existing functionality:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nGreat, now let's create a more comprehensive test script to ensure our `__len__` implementation works in various scenarios:\n\n\ncat > /workspace/comprehensive_pipeline_len_test.py << 'EOF'\n\"\"\"\nComprehensive tests for the __len__ method of Pipeline.\n\"\"\"\nfrom sklearn.pipeline import Pipeline, FeatureUnion\nfrom sklearn import svm\nfrom sklearn.feature_selection import SelectKBest, f_regression\nfrom sklearn.datasets import samples_generator\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\n\n# Test case 1: Normal pipeline\nprint(\"Test case 1: Normal pipeline\")\nanova_filter = SelectKBest(f_regression, k=5)\nclf = svm.SVC(kernel='linear')\npipe = Pipeline([('anova', anova_filter), ('svc', clf)])\nprint(f\"Length of normal pipeline: {len(pipe)}\")\nassert len(pipe) == 2, \"Length of normal pipeline should be 2\"\n\n# Test case 2: Empty pipeline\nprint(\"\\nTest case 2: Empty pipeline\")\nempty_pipe = Pipeline([])\nprint(f\"Length of empty pipeline: {len(empty_pipe)}\")\nassert len(empty_pipe) == 0, \"Length of empty pipeline should be 0\"\n\n# Test case 3: Long pipeline\nprint(\"\\nTest case 3: Long pipeline\")\nX, y = samples_generator.make_classification(\n n_informative=5, n_redundant=0, random_state=42)\n\nsteps = []\nfor i in range(10):\n steps.append((f'scaler_{i}', StandardScaler()))\nlong_pipe = Pipeline(steps)\nprint(f\"Length of long pipeline: {len(long_pipe)}\")\nassert len(long_pipe) == 10, \"Length of long pipeline should be 10\"\n\n# Test case 4: Pipeline with FeatureUnion\nprint(\"\\nTest case 4: Pipeline with FeatureUnion\")\nunion = FeatureUnion([\n ('pca', PCA(n_components=1)),\n ('select', SelectKBest(k=1))\n])\npipe_with_union = Pipeline([\n ('scaler', StandardScaler()),\n ('union', union),\n ('svc', svm.SVC(kernel='linear'))\n])\nprint(f\"Length of pipeline with FeatureUnion: {len(pipe_with_union)}\")\nassert len(pipe_with_union) == 3, \"Length of pipeline with FeatureUnion should be 3\"\n\n# Test case 5: Various slicing operations with len\nprint(\"\\nTest case 5: Various slicing operations with len\")\npipe = Pipeline([\n ('step1', StandardScaler()),\n ('step2', SelectKBest(f_regression, k=5)),\n ('step3', svm.SVC(kernel='linear'))\n])\nprint(f\"Original pipe length: {len(pipe)}\")\nassert len(pipe) == 3, \"Original pipe length should be 3\"\n\n# Slice from beginning to end\nslice1 = pipe[:len(pipe)]\nprint(f\"pipe[:len(pipe)] steps: {[name for name, _ in slice1.steps]}\")\nassert len(slice1) == 3, \"Length of pipe[:len(pipe)] should be 3\"\n\n# Slice from beginning to middle\nslice2 = pipe[:len(pipe)//2]\nprint(f\"pipe[:len(pipe)//2] steps: {[name for name, _ in slice2.steps]}\")\nassert len(slice2) == 1, \"Length of pipe[:len(pipe)//2] should be 1\"\n\n# Slice from middle to end\nslice3 = pipe[len(pipe)//2:]\nprint(f\"pipe[len(pipe)//2:] steps: {[name for name, _ in slice3.steps]}\")\nassert len(slice3) == 2, \"Length of pipe[len(pipe)//2:] should be 2\"\n\n# Slice a subset in the middle\nslice4 = pipe[1:len(pipe)-1]\nprint(f\"pipe[1:len(pipe)-1] steps: {[name for name, _ in slice4.steps]}\")\nassert len(slice4) == 1, \"Length of pipe[1:len(pipe)-1] should be 1\"\n\nprint(\"\\nAll tests passed!\")\nEOF\n\n\nLet's run this comprehensive test:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nLet's also run specific tests from the scikit-learn test suite that relate to Pipeline indexing to ensure our changes integrate well:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing\n\n\nOh, there might not be a specific test named `test_pipeline_indexing`. Let's look at the available tests in the test_pipeline.py file:\n\n\ngrep -r \"def test_\" /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py\n\n\nLet's run the tests that seem related to pipeline indexing or slicing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing || python -m pytest -xvs sklearn/tests/test_pipeline.py | grep -i \"index\"\n\n\nSince we might not have direct access to specific test names, let's examine the pipeline test file to identify relevant tests:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py | grep -i \"index\\|slicing\\|getitem\"\n\n\nBased on our findings, let's run specific tests that are relevant to our changes:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py::test_pipeline_indexing || python -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nLet's check if the test_pipeline.py file contains any tests for slicing functionality:\n\n\ncat /workspace/scikit-learn__scikit-learn__0.21/sklearn/tests/test_pipeline.py | grep -A 20 -B 20 \"slicing\\|__getitem__\"\n\n\nLet's modify our comprehensive test script to include more edge cases and ensure it aligns with any existing tests:\n\n\ncat >> /workspace/comprehensive_pipeline_len_test.py << 'EOF'\n\n# Test case 6: Testing on pipeline with make_pipeline\nprint(\"\\nTest case 6: Testing on pipeline with make_pipeline\")\nfrom sklearn.pipeline import make_pipeline\n\npipe = make_pipeline(StandardScaler(), PCA(n_components=2), SelectKBest(k=1))\nprint(f\"Length of make_pipeline: {len(pipe)}\")\nassert len(pipe) == 3, \"Length of make_pipeline should be 3\"\n\n# Test case 7: Testing on nested pipelines\nprint(\"\\nTest case 7: Testing on nested pipelines\")\ninner_pipe = Pipeline([('scaler', StandardScaler()), ('pca', PCA(n_components=2))])\nouter_pipe = Pipeline([('inner', inner_pipe), ('svc', svm.SVC())])\nprint(f\"Length of outer pipeline: {len(outer_pipe)}\")\nassert len(outer_pipe) == 2, \"Length of outer pipeline should be 2\"\n\n# Test case 8: Testing __len__ with negative indexing\nprint(\"\\nTest case 8: Testing __len__ with negative indexing\")\npipe = Pipeline([\n ('step1', StandardScaler()),\n ('step2', PCA(n_components=2)),\n ('step3', SelectKBest(k=1))\n])\nneg_slice = pipe[-len(pipe):]\nprint(f\"pipe[-len(pipe):] steps: {[name for name, _ in neg_slice.steps]}\")\nassert len(neg_slice) == 3, \"Length of pipe[-len(pipe):] should be 3\"\n\nneg_slice2 = pipe[:-len(pipe)]\nprint(f\"pipe[:-len(pipe)] steps: {[name for name, _ in neg_slice2.steps]}\")\nassert len(neg_slice2) == 0, \"Length of pipe[:-len(pipe)] should be 0\"\n\n# Test case 9: Testing complex slicing expressions with len\nprint(\"\\nTest case 9: Testing complex slicing expressions with len\")\npipe = Pipeline([\n ('step1', StandardScaler()),\n ('step2', PCA(n_components=2)),\n ('step3', SelectKBest(k=1)),\n ('step4', svm.SVC())\n])\ncomplex_slice = pipe[len(pipe)//4:len(pipe)//4*3]\nprint(f\"pipe[len(pipe)//4:len(pipe)//4*3] steps: {[name for name, _ in complex_slice.steps]}\")\nassert len(complex_slice) == 2, \"Length of complex slice should be 2\"\n\nprint(\"\\nAll additional tests passed!\")\nEOF\n\n\nLet's run the updated comprehensive test:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nLet's also verify that our implementation doesn't cause any regressions in the scikit-learn test suite:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py\n\n\nNow, let's also run another specific test related to pipeline functionality:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_metaestimators.py | grep -i \"pipeline\"\n\n\nLet's get a deeper understanding of how the Pipeline class is used in tests by examining test files containing pipeline tests:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"Pipeline\" --include=\"*.py\" sklearn/tests/ | head -n 20\n\n\nLet's also look for any tests related to pipeline length or slicing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"len(\" --include=\"*.py\" sklearn/tests/ | grep -i \"pipeline\" | head -n 20\n\n\nWith all our tests passing, it appears we've successfully implemented the `__len__` method for the Pipeline class, and it behaves as expected in various scenarios.\n\nLet's summarize what we've done:\n\n1. We located the Pipeline class in sklearn/pipeline.py\n2. We identified that it was missing a `__len__` method, which was causing the error described in the issue\n3. We implemented the `__len__` method to return the length of the pipeline's steps list\n4. We verified our fix with a reproduction script and comprehensive tests\n5. We confirmed that existing scikit-learn tests still pass with our changes\n\nOur implementation is minimal and focused on the specific issue, adding only the `__len__` method without changing any existing functionality.\n\nAt this point we can conclude that the issue has been successfully resolved. The Pipeline class now supports `len(pipe)`, which allows expressions like `pipe[:len(pipe)]` to work correctly.\n\nLet's make sure we've run the specific test for pipeline indexing:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\npython -m pytest -xvs sklearn/tests/test_pipeline.py | grep -i \"indexing\"\n\n\nLet's also check if there are any tests related to `__len__` or length in the pipeline tests:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ngrep -r \"__len__\\|len(\" --include=\"*.py\" sklearn/tests/test_pipeline.py\n\n\nWith all our checks and tests, we're confident that our implementation of the `__len__` method in the Pipeline class correctly resolves the issue described. The method returns the number of steps in the pipeline, which is the expected behavior for `len(pipe)`.\n\nI believe our solution is complete and correct. The changes we made are minimal and focused on the specific issue, and we've thoroughly tested them to ensure they work as expected in various scenarios.\n\nLet's complete the task by running our comprehensive test one more time:\n\n\npython /workspace/comprehensive_pipeline_len_test.py\n\n\nI think we're good to go. Our implementation of the `__len__` method in the Pipeline class resolves the issue described, allowing expressions like `pipe[:len(pipe)]` to work correctly.\n\nLet's do a final check on the changes we made. The diff should show just the addition of the `__len__` method to the Pipeline class:\n\n\ncd /workspace/scikit-learn__scikit-learn__0.21\ndiff /workspace/pipeline.py.backup sklearn/pipeline.py\n\n\nWith all our checks and tests passing, we've successfully resolved the issue described in the problem statement.\n\nAlright, let's summarize our solution once more:\n\nThe issue was that Pipeline in scikit-learn didn't implement the `__len__` method, which was causing `pipe[:len(pipe)]` to raise an error, even though Pipeline supported indexing.\n\nTo resolve this, we added a `__len__` method to the Pipeline class that returns the number of steps in the pipeline. This allows expressions like `len(pipe)` and `pipe[:len(pipe)]` to work correctly, providing a more consistent and intuitive API for users.\n\nWe thoroughly tested our solution with:\n1. A script to reproduce the original error and confirm our fix\n2. Comprehensive tests for various scenarios, including edge cases\n3. Running the existing scikit-learn test suite to ensure no regressions\n\nThese tests confirm that our solution correctly resolves the issue while maintaining compatibility with the rest of the codebase.\n\nAnd that concludes our implementation.",
"signature": "ErUBCkYIARgCIkDnKEqW20HOxB9jS85ReLznKuKSV88wnAJf/M+y9ge7U+GOWAHd/trgmvpgHpJmOBkeUWUftR5g+81TNmAsDd2EEgxQHv0uMQBMvelCR+saDFvnSSfaNOj3NTVYpyIwG1ddKj5AVnXe382HERyVchmOTdn1ebogEFpXlRE66Mckq57xLSygusq6MwAV/6RvKh28HEuwcXNQn+BPIxQDVCwGGUh5g4fpZ6IgGk3mRg==",
},
{
"type": "text",
"text": "I'll help you implement the `__len__` method for Pipeline in scikit-learn to fix the issue described. Let's start by exploring the repository and understanding the problem better.\n\n## Step 1: Explore the repository structure\n\nLet's first look at the repository structure:",
},
],
},
{"role": "user", "content": [{"type": "text", "text": "Who do you know?"}]},
],
"max_tokens": 32768,
"thinking": {"type": "enabled", "budget_tokens": 30720},
}
with patch.object(client, "post") as mock_post:
try:
if sync_mode:
response = litellm.completion(**params, client=client)
else:
response = await litellm.acompletion(**params, client=client)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
json_data = mock_post.call_args.kwargs["data"]
assert (
"Alright, let's get started with resolving this issue about implementing"
in json_data
)
@pytest.mark.asyncio
async def test_bedrock_stream_thinking_content_openwebui():
"""
When merge_reasoning_content_in_choices=True
The content should be collected as
```
<think>
I am a helpful assistant, the user wants to know who I am
</think>
Hi I am Anthropic, I am a helpful assistant
```
"""
response = await litellm.acompletion(
model="bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=[{"role": "user", "content": "Hello who is this?"}],
stream=True,
max_tokens=1080,
thinking={"type": "enabled", "budget_tokens": 1024},
merge_reasoning_content_in_choices=True,
)
content = ""
async for chunk in response:
content += chunk.choices[0].delta.content or ""
# OpenWebUI expects the reasoning_content to be removed, otherwise this will appear as duplicate thinking blocks
assert getattr(chunk.choices[0].delta, "reasoning_content", None) is None
print(chunk)
print("collected content", content)
# Assert that the content follows the expected format with exactly one thinking section
think_open_pos = content.find("<think>")
think_close_pos = content.find("</think>")
# Assert there's exactly one opening and closing tag
assert think_open_pos >= 0, "Opening <think> tag not found"
assert think_close_pos > 0, "Closing </think> tag not found"
assert (
content.count("<think>") == 1
), "There should be exactly one opening <think> tag"
assert (
content.count("</think>") == 1
), "There should be exactly one closing </think> tag"
# Assert the opening tag comes before the closing tag
assert (
think_open_pos < think_close_pos
), "Opening tag should come before closing tag"
# Assert there's content between the tags
thinking_content = content[think_open_pos + 7 : think_close_pos]
assert (
len(thinking_content.strip()) > 0
), "There should be content between thinking tags"
# Assert there's content after the closing tag
assert (
len(content) > think_close_pos + 8
), "There should be content after the thinking tags"
response_content = content[think_close_pos + 8 :].strip()
assert (
len(response_content) > 0
), "There should be non-empty content after thinking tags"
def test_bedrock_application_inference_profile():
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
client = HTTPHandler()
client2 = HTTPHandler()
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
}
}
}
]
with patch.object(client, "post") as mock_post, patch.object(
client2, "post"
) as mock_post2:
try:
resp = completion(
model="bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
messages=[{"role": "user", "content": "Hello, how are you?"}],
model_id="arn:aws:bedrock:eu-central-1:000000000000:application-inference-profile/a0a0a0a0a0a0",
client=client,
tools=tools
)
except Exception as e:
print(e)
try:
resp = completion(
model="bedrock/converse/arn:aws:bedrock:eu-central-1:000000000000:application-inference-profile/a0a0a0a0a0a0",
messages=[{"role": "user", "content": "Hello, how are you?"}],
client=client2,
tools=tools
)
except Exception as e:
print(e)
mock_post.assert_called_once()
mock_post2.assert_called_once()
print(mock_post.call_args.kwargs)
json_data = mock_post.call_args.kwargs["data"]
assert mock_post.call_args.kwargs["url"].startswith(
"https://bedrock-runtime.eu-central-1.amazonaws.com/"
)
assert mock_post2.call_args.kwargs["url"] == mock_post.call_args.kwargs["url"]
def return_mocked_response(model: str):
if model == "bedrock/mistral.mistral-large-2407-v1:0":
return {
"metrics": {"latencyMs": 316},
"output": {
"message": {
"content": [{"text": "Hello! How are you doing today? How can"}],
"role": "assistant",
}
},
"stopReason": "max_tokens",
"usage": {"inputTokens": 5, "outputTokens": 10, "totalTokens": 15},
}
@pytest.mark.parametrize(
"model",
[
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
def test_bedrock_meta_llama_function_calling():
"""
Tests that:
- meta llama models support function calling
"""
from litellm.utils import return_raw_request
from litellm.types.utils import CallTypes
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in fahrenheit?",
}
]
request_args = {
"messages": messages,
"tools": tools,
"model": "bedrock/us.meta.llama4-scout-17b-instruct-v1:0",
}
response = return_raw_request(
endpoint=CallTypes.completion,
kwargs=request_args,
)
print(response)
|