File size: 8,833 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import sys

import pytest

from litellm.utils import supports_url_context

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system paths

from base_llm_unit_tests import BaseLLMChatTest
from litellm.llms.vertex_ai.context_caching.transformation import (
    separate_cached_messages,
)
import litellm
from litellm import completion

class TestGoogleAIStudioGemini(BaseLLMChatTest):
    def get_base_completion_call_args(self) -> dict:
        return {"model": "gemini/gemini-2.0-flash"}
    
    def get_base_completion_call_args_with_reasoning_model(self) -> dict:
        return {"model": "gemini/gemini-2.5-flash-preview-04-17"}

    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        from litellm.litellm_core_utils.prompt_templates.factory import (
            convert_to_gemini_tool_call_invoke,
        )

        result = convert_to_gemini_tool_call_invoke(tool_call_no_arguments)
        print(result)

    def test_url_context(self):
        from litellm.utils import supports_url_context
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        litellm._turn_on_debug()

        base_completion_call_args = self.get_base_completion_call_args()

        if not supports_url_context(base_completion_call_args["model"], None):
            pytest.skip("Model does not support url context")

        response = self.completion_function(
            **base_completion_call_args,
            messages=[{"role": "user", "content": "Summarize the content of this URL: https://en.wikipedia.org/wiki/Artificial_intelligence"}],
            tools=[{"urlContext": {}}],
        )

        assert response is not None
        assert response.model_extra['vertex_ai_url_context_metadata'] is not None, "URL context metadata should be present"
        print(f"response={response}")

def test_gemini_context_caching_separate_messages():
    messages = [
        # System Message
        {
            "role": "system",
            "content": [
                {
                    "type": "text",
                    "text": "Here is the full text of a complex legal agreement" * 400,
                    "cache_control": {"type": "ephemeral"},
                }
            ],
        },
        # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What are the key terms and conditions in this agreement?",
                    "cache_control": {"type": "ephemeral"},
                }
            ],
        },
        {
            "role": "assistant",
            "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
        },
        # The final turn is marked with cache-control, for continuing in followups.
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What are the key terms and conditions in this agreement?",
                    "cache_control": {"type": "ephemeral"},
                }
            ],
        },
    ]
    cached_messages, non_cached_messages = separate_cached_messages(messages)
    print(cached_messages)
    print(non_cached_messages)
    assert len(cached_messages) > 0, "Cached messages should be present"
    assert len(non_cached_messages) > 0, "Non-cached messages should be present"


def test_gemini_image_generation():
    # litellm._turn_on_debug()
    response = completion(
        model="gemini/gemini-2.0-flash-exp-image-generation",
        messages=[{"role": "user", "content": "Generate an image of a cat"}],
        modalities=["image", "text"],
    )
    assert response.choices[0].message.content is not None



def test_gemini_thinking():
    litellm._turn_on_debug()
    from litellm.types.utils import Message, CallTypes
    from litellm.utils import return_raw_request
    import json

    messages = [
        {"role": "user", "content": "Explain the concept of Occam's Razor and provide a simple, everyday example"}
    ]
    reasoning_content = "I'm thinking about Occam's Razor."
    assistant_message = Message(content='Okay, let\'s break down Occam\'s Razor.', reasoning_content=reasoning_content, role='assistant', tool_calls=None, function_call=None, provider_specific_fields=None)

    messages.append(assistant_message)

    raw_request = return_raw_request(
        endpoint=CallTypes.completion,
        kwargs={
            "model": "gemini/gemini-2.5-flash-preview-04-17",
            "messages": messages,
        }
    )
    assert reasoning_content in json.dumps(raw_request)
    response = completion(
        model="gemini/gemini-2.5-flash-preview-04-17",
        messages=messages, # make sure call works
    )
    print(response.choices[0].message)
    assert response.choices[0].message.content is not None


def test_gemini_thinking_budget_0():
    litellm._turn_on_debug()
    from litellm.types.utils import Message, CallTypes
    from litellm.utils import return_raw_request
    import json

    raw_request = return_raw_request(
        endpoint=CallTypes.completion,
        kwargs={
            "model": "gemini/gemini-2.5-flash-preview-04-17",
            "messages": [{"role": "user", "content": "Explain the concept of Occam's Razor and provide a simple, everyday example"}],
            "thinking": {"type": "enabled", "budget_tokens": 0}
        }
    )
    print(raw_request)
    assert "0" in json.dumps(raw_request["raw_request_body"])


def test_gemini_finish_reason():
    import os
    from litellm import completion
    litellm._turn_on_debug()
    response = completion(model="gemini/gemini-1.5-pro", messages=[{"role": "user", "content": "give me 3 random words"}], max_tokens=2)
    print(response)
    assert response.choices[0].finish_reason is not None
    assert response.choices[0].finish_reason == "length"


def test_gemini_url_context():
    from litellm import completion
    litellm._turn_on_debug()

    url = "https://ai.google.dev/gemini-api/docs/models"
    prompt = f"""
    Summarize this document:
    {url}
    """
    response = completion(
            model="gemini/gemini-2.0-flash",
            messages=[{"role": "user", "content": prompt}],
            tools=[{"urlContext": {}}],
        )
    print(response)
    message = response.choices[0].message.content
    assert message is not None
    url_context_metadata = response.model_extra['vertex_ai_url_context_metadata']
    assert url_context_metadata is not None
    urlMetadata = url_context_metadata[0]['urlMetadata'][0]
    assert urlMetadata['retrievedUrl'] == url
    assert urlMetadata['urlRetrievalStatus'] == 'URL_RETRIEVAL_STATUS_SUCCESS'



def test_gemini_with_grounding():
    from litellm import completion, Usage, stream_chunk_builder
    litellm._turn_on_debug()
    litellm.set_verbose = True
    tools = [{"googleSearch": {}}]

    # response = completion(model="gemini/gemini-2.0-flash", messages=[{"role": "user", "content": "What is the capital of France?"}], tools=tools)
    # print(response)
    # usage: Usage = response.usage
    # assert usage.prompt_tokens_details.web_search_requests is not None
    # assert usage.prompt_tokens_details.web_search_requests > 0


    ## Check streaming

    response = completion(model="gemini/gemini-2.0-flash", messages=[{"role": "user", "content": "What is the capital of France?"}], tools=tools, stream=True, stream_options={"include_usage": True})
    chunks = []
    for chunk in response:
        chunks.append(chunk)
    print(f"chunks before stream_chunk_builder: {chunks}")
    assert len(chunks) > 0
    complete_response = stream_chunk_builder(chunks)
    print(complete_response)
    assert complete_response is not None
    usage: Usage = complete_response.usage
    assert usage.prompt_tokens_details.web_search_requests is not None
    assert usage.prompt_tokens_details.web_search_requests > 0


def test_gemini_with_empty_function_call_arguments():
    from litellm import completion
    litellm._turn_on_debug()
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "parameters": "",
            },
        }
    ]
    response = completion(model="gemini/gemini-2.0-flash", messages=[{"role": "user", "content": "What is the capital of France?"}], tools=tools)
    print(response)
    assert response.choices[0].message.content is not None