File size: 16,729 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch
from typing import Optional

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path


import httpx
import pytest
from respx import MockRouter

import litellm
from litellm import Choices, Message, ModelResponse
from base_llm_unit_tests import BaseLLMChatTest
import asyncio
from litellm.types.llms.openai import (
    ChatCompletionAnnotation,
    ChatCompletionAnnotationURLCitation,
)
from base_audio_transcription_unit_tests import BaseLLMAudioTranscriptionTest


def test_openai_prediction_param():
    litellm.set_verbose = True
    code = """
    /// <summary>
    /// Represents a user with a first name, last name, and username.
    /// </summary>
    public class User
    {
        /// <summary>
        /// Gets or sets the user's first name.
        /// </summary>
        public string FirstName { get; set; }

        /// <summary>
        /// Gets or sets the user's last name.
        /// </summary>
        public string LastName { get; set; }

        /// <summary>
        /// Gets or sets the user's username.
        /// </summary>
        public string Username { get; set; }
    }
    """

    completion = litellm.completion(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
            },
            {"role": "user", "content": code},
        ],
        prediction={"type": "content", "content": code},
    )

    print(completion)

    assert (
        completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
        or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
    )


@pytest.mark.asyncio
async def test_openai_prediction_param_mock():
    """
    Tests that prediction parameter is correctly passed to the API
    """
    litellm.set_verbose = True

    code = """
    /// <summary>
    /// Represents a user with a first name, last name, and username.
    /// </summary>
    public class User
    {
        /// <summary>
        /// Gets or sets the user's first name.
        /// </summary>
        public string FirstName { get; set; }

        /// <summary>
        /// Gets or sets the user's last name.
        /// </summary>
        public string LastName { get; set; }

        /// <summary>
        /// Gets or sets the user's username.
        /// </summary>
        public string Username { get; set; }
    }
    """
    from openai import AsyncOpenAI

    client = AsyncOpenAI(api_key="fake-api-key")

    with patch.object(
        client.chat.completions.with_raw_response, "create"
    ) as mock_client:
        try:
            await litellm.acompletion(
                model="gpt-4o-mini",
                messages=[
                    {
                        "role": "user",
                        "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
                    },
                    {"role": "user", "content": code},
                ],
                prediction={"type": "content", "content": code},
                client=client,
            )
        except Exception as e:
            print(f"Error: {e}")

        mock_client.assert_called_once()
        request_body = mock_client.call_args.kwargs

        # Verify the request contains the prediction parameter
        assert "prediction" in request_body
        # verify prediction is correctly sent to the API
        assert request_body["prediction"] == {"type": "content", "content": code}


@pytest.mark.asyncio
async def test_openai_prediction_param_with_caching():
    """
    Tests using `prediction` parameter with caching
    """
    from litellm.caching.caching import LiteLLMCacheType
    import logging
    from litellm._logging import verbose_logger

    verbose_logger.setLevel(logging.DEBUG)
    import time

    litellm.set_verbose = True
    litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
    code = """
    /// <summary>
    /// Represents a user with a first name, last name, and username.
    /// </summary>
    public class User
    {
        /// <summary>
        /// Gets or sets the user's first name.
        /// </summary>
        public string FirstName { get; set; }

        /// <summary>
        /// Gets or sets the user's last name.
        /// </summary>
        public string LastName { get; set; }

        /// <summary>
        /// Gets or sets the user's username.
        /// </summary>
        public string Username { get; set; }
    }
    """

    completion_response_1 = litellm.completion(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
            },
            {"role": "user", "content": code},
        ],
        prediction={"type": "content", "content": code},
    )

    time.sleep(0.5)

    # cache hit
    completion_response_2 = litellm.completion(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "user",
                "content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
            },
            {"role": "user", "content": code},
        ],
        prediction={"type": "content", "content": code},
    )

    assert completion_response_1.id == completion_response_2.id

    completion_response_3 = litellm.completion(
        model="gpt-4o-mini",
        messages=[
            {"role": "user", "content": "What is the first name of the user?"},
        ],
        prediction={"type": "content", "content": code + "FirstName"},
    )

    assert completion_response_3.id != completion_response_1.id


@pytest.mark.asyncio()
async def test_vision_with_custom_model():
    """
    Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request

    """
    import base64
    import requests
    from openai import AsyncOpenAI

    client = AsyncOpenAI(api_key="fake-api-key")

    litellm.set_verbose = True
    api_base = "https://my-custom.api.openai.com"

    # Fetch and encode a test image
    url = "https://dummyimage.com/100/100/fff&text=Test+image"
    response = requests.get(url)
    file_data = response.content
    encoded_file = base64.b64encode(file_data).decode("utf-8")
    base64_image = f"data:image/png;base64,{encoded_file}"

    with patch.object(
        client.chat.completions.with_raw_response, "create"
    ) as mock_client:
        try:
            response = await litellm.acompletion(
                model="openai/my-custom-model",
                max_tokens=10,
                api_base=api_base,  # use the mock api
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {"type": "text", "text": "What's in this image?"},
                            {
                                "type": "image_url",
                                "image_url": {"url": base64_image},
                            },
                        ],
                    }
                ],
                client=client,
            )
        except Exception as e:
            print(f"Error: {e}")

        mock_client.assert_called_once()
        request_body = mock_client.call_args.kwargs

        print("request_body: ", request_body)

        assert request_body["messages"] == [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "What's in this image?"},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": ""
                        },
                    },
                ],
            },
        ]
        assert request_body["model"] == "my-custom-model"
        assert request_body["max_tokens"] == 10


class TestOpenAIChatCompletion(BaseLLMChatTest):
    def get_base_completion_call_args(self) -> dict:
        return {"model": "gpt-4o-mini"}

    def test_tool_call_no_arguments(self, tool_call_no_arguments):
        """Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
        pass

    def test_prompt_caching(self):
        """
        Test that prompt caching works correctly.
        Skip for now, as it's working locally but not in CI
        """
        pass

    def test_prompt_caching(self):
        """
        Works locally but CI/CD is failing this test. Temporary skip to push out a new release.
        """
        pass


def test_completion_bad_org():
    import litellm

    litellm.set_verbose = True
    _old_org = os.environ.get("OPENAI_ORGANIZATION", None)
    os.environ["OPENAI_ORGANIZATION"] = "bad-org"
    messages = [{"role": "user", "content": "hi"}]

    with pytest.raises(Exception) as exc_info:
        comp = litellm.completion(
            model="gpt-4o-mini", messages=messages, organization="bad-org"
        )

    print(exc_info.value)
    assert "header should match organization for API key" in str(exc_info.value)

    if _old_org is not None:
        os.environ["OPENAI_ORGANIZATION"] = _old_org
    else:
        del os.environ["OPENAI_ORGANIZATION"]


@patch("litellm.main.openai_chat_completions._get_openai_client")
def test_openai_max_retries_0(mock_get_openai_client):
    import litellm

    litellm.set_verbose = True
    response = litellm.completion(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": "hi"}],
        max_retries=0,
    )

    mock_get_openai_client.assert_called_once()
    assert mock_get_openai_client.call_args.kwargs["max_retries"] == 0


@pytest.mark.parametrize("model", ["o1", "o1-preview", "o1-mini", "o3-mini"])
def test_o1_parallel_tool_calls(model):
    litellm.completion(
        model=model,
        messages=[
            {
                "role": "user",
                "content": "foo",
            }
        ],
        parallel_tool_calls=True,
        drop_params=True,
    )


def test_openai_chat_completion_streaming_handler_reasoning_content():
    from litellm.llms.openai.chat.gpt_transformation import (
        OpenAIChatCompletionStreamingHandler,
    )
    from unittest.mock import MagicMock

    streaming_handler = OpenAIChatCompletionStreamingHandler(
        streaming_response=MagicMock(),
        sync_stream=True,
    )
    response = streaming_handler.chunk_parser(
        chunk={
            "id": "e89b6501-8ac2-464c-9550-7cd3daf94350",
            "object": "chat.completion.chunk",
            "created": 1741037890,
            "model": "deepseek-reasoner",
            "system_fingerprint": "fp_5417b77867_prod0225",
            "choices": [
                {
                    "index": 0,
                    "delta": {"content": None, "reasoning_content": "."},
                    "logprobs": None,
                    "finish_reason": None,
                }
            ],
        }
    )

    assert response.choices[0].delta.reasoning_content == "."


def validate_response_url_citation(url_citation: ChatCompletionAnnotationURLCitation):
    assert "end_index" in url_citation
    assert "start_index" in url_citation
    assert "url" in url_citation


def validate_web_search_annotations(annotations: ChatCompletionAnnotation):
    """validates litellm response contains web search annotations"""
    print("annotations: ", annotations)
    assert annotations is not None
    assert isinstance(annotations, list)
    for annotation in annotations:
        assert annotation["type"] == "url_citation"
        url_citation: ChatCompletionAnnotationURLCitation = annotation["url_citation"]
        validate_response_url_citation(url_citation)


@pytest.mark.flaky(reruns=3)
def test_openai_web_search():
    """Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
    litellm._turn_on_debug()
    response = litellm.completion(
        model="openai/gpt-4o-search-preview",
        messages=[
            {
                "role": "user",
                "content": "What was a positive news story from today?",
            }
        ],
    )
    print("litellm response: ", response.model_dump_json(indent=4))
    message = response.choices[0].message
    if hasattr(message, "annotations"):
        annotations: ChatCompletionAnnotation = message.annotations
        validate_web_search_annotations(annotations)


def test_openai_web_search_streaming():
    """Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
    # litellm._turn_on_debug()
    test_openai_web_search: Optional[ChatCompletionAnnotation] = None
    response = litellm.completion(
        model="openai/gpt-4o-search-preview",
        messages=[
            {
                "role": "user",
                "content": "What was a positive news story from today?",
            }
        ],
        stream=True,
    )
    for chunk in response:
        print("litellm response chunk: ", chunk)
        if (
            hasattr(chunk.choices[0].delta, "annotations")
            and chunk.choices[0].delta.annotations is not None
        ):
            test_openai_web_search = chunk.choices[0].delta.annotations

    # Assert this request has at-least one web search annotation
    if test_openai_web_search is not None:
        validate_web_search_annotations(test_openai_web_search)


class TestOpenAIGPT4OAudioTranscription(BaseLLMAudioTranscriptionTest):
    def get_base_audio_transcription_call_args(self) -> dict:
        return {
            "model": "openai/gpt-4o-transcribe",
        }

    def get_custom_llm_provider(self) -> litellm.LlmProviders:
        return litellm.LlmProviders.OPENAI

@pytest.mark.asyncio
@pytest.mark.parametrize("model", ["gpt-4o"])
async def test_openai_pdf_url(model):
    from litellm.utils import return_raw_request, CallTypes

    request = return_raw_request(CallTypes.completion, {
        "model": model,
        "messages": [{"role": "user", "content": [{"type": "text", "text": "What is the first page of the PDF?"}, {"type": "file", "file": {"file_id": "https://arxiv.org/pdf/2303.08774"}}]}],
    })
    print("request: ", request)

    assert "file_data" in request["raw_request_body"]["messages"][0]["content"][1]["file"]


@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_openai_codex_stream(sync_mode):
    from litellm.main import stream_chunk_builder
    kwargs = {
        "model": "openai/codex-mini-latest",
        "messages": [{"role": "user", "content": "Hey!"}],
        "stream": True,
    }

    chunks = []
    if sync_mode:
        response = litellm.completion(
            **kwargs
        )
        for chunk in response:
            chunks.append(chunk)
    else:
        response = await litellm.acompletion(
            **kwargs
        )
        async for chunk in response:
            chunks.append(chunk)
    
    complete_response = stream_chunk_builder(chunks=chunks)
    print("complete_response: ", complete_response)

    assert complete_response.choices[0].message.content is not None

@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_openai_codex(sync_mode):
    
    from litellm import acompletion

    kwargs = {
        "model": "openai/codex-mini-latest",
        "messages": [{"role": "user", "content": "Hey!"}],
    }

    if sync_mode:
        response = litellm.completion(
            **kwargs
        )
    else:
        response = await litellm.acompletion(
            **kwargs
        )
    print("response: ", response)

    assert response.choices[0].message.content is not None