Spaces:
Configuration error
Configuration error
File size: 16,729 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock, patch
from typing import Optional
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
from base_llm_unit_tests import BaseLLMChatTest
import asyncio
from litellm.types.llms.openai import (
ChatCompletionAnnotation,
ChatCompletionAnnotationURLCitation,
)
from base_audio_transcription_unit_tests import BaseLLMAudioTranscriptionTest
def test_openai_prediction_param():
litellm.set_verbose = True
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
completion = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
print(completion)
assert (
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
)
@pytest.mark.asyncio
async def test_openai_prediction_param_mock():
"""
Tests that prediction parameter is correctly passed to the API
"""
litellm.set_verbose = True
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
await litellm.acompletion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
# Verify the request contains the prediction parameter
assert "prediction" in request_body
# verify prediction is correctly sent to the API
assert request_body["prediction"] == {"type": "content", "content": code}
@pytest.mark.asyncio
async def test_openai_prediction_param_with_caching():
"""
Tests using `prediction` parameter with caching
"""
from litellm.caching.caching import LiteLLMCacheType
import logging
from litellm._logging import verbose_logger
verbose_logger.setLevel(logging.DEBUG)
import time
litellm.set_verbose = True
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
code = """
/// <summary>
/// Represents a user with a first name, last name, and username.
/// </summary>
public class User
{
/// <summary>
/// Gets or sets the user's first name.
/// </summary>
public string FirstName { get; set; }
/// <summary>
/// Gets or sets the user's last name.
/// </summary>
public string LastName { get; set; }
/// <summary>
/// Gets or sets the user's username.
/// </summary>
public string Username { get; set; }
}
"""
completion_response_1 = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
time.sleep(0.5)
# cache hit
completion_response_2 = litellm.completion(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
},
{"role": "user", "content": code},
],
prediction={"type": "content", "content": code},
)
assert completion_response_1.id == completion_response_2.id
completion_response_3 = litellm.completion(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": "What is the first name of the user?"},
],
prediction={"type": "content", "content": code + "FirstName"},
)
assert completion_response_3.id != completion_response_1.id
@pytest.mark.asyncio()
async def test_vision_with_custom_model():
"""
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
"""
import base64
import requests
from openai import AsyncOpenAI
client = AsyncOpenAI(api_key="fake-api-key")
litellm.set_verbose = True
api_base = "https://my-custom.api.openai.com"
# Fetch and encode a test image
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
response = await litellm.acompletion(
model="openai/my-custom-model",
max_tokens=10,
api_base=api_base, # use the mock api
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": base64_image},
},
],
}
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["messages"] == [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": ""
},
},
],
},
]
assert request_body["model"] == "my-custom-model"
assert request_body["max_tokens"] == 10
class TestOpenAIChatCompletion(BaseLLMChatTest):
def get_base_completion_call_args(self) -> dict:
return {"model": "gpt-4o-mini"}
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
def test_prompt_caching(self):
"""
Test that prompt caching works correctly.
Skip for now, as it's working locally but not in CI
"""
pass
def test_prompt_caching(self):
"""
Works locally but CI/CD is failing this test. Temporary skip to push out a new release.
"""
pass
def test_completion_bad_org():
import litellm
litellm.set_verbose = True
_old_org = os.environ.get("OPENAI_ORGANIZATION", None)
os.environ["OPENAI_ORGANIZATION"] = "bad-org"
messages = [{"role": "user", "content": "hi"}]
with pytest.raises(Exception) as exc_info:
comp = litellm.completion(
model="gpt-4o-mini", messages=messages, organization="bad-org"
)
print(exc_info.value)
assert "header should match organization for API key" in str(exc_info.value)
if _old_org is not None:
os.environ["OPENAI_ORGANIZATION"] = _old_org
else:
del os.environ["OPENAI_ORGANIZATION"]
@patch("litellm.main.openai_chat_completions._get_openai_client")
def test_openai_max_retries_0(mock_get_openai_client):
import litellm
litellm.set_verbose = True
response = litellm.completion(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "hi"}],
max_retries=0,
)
mock_get_openai_client.assert_called_once()
assert mock_get_openai_client.call_args.kwargs["max_retries"] == 0
@pytest.mark.parametrize("model", ["o1", "o1-preview", "o1-mini", "o3-mini"])
def test_o1_parallel_tool_calls(model):
litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": "foo",
}
],
parallel_tool_calls=True,
drop_params=True,
)
def test_openai_chat_completion_streaming_handler_reasoning_content():
from litellm.llms.openai.chat.gpt_transformation import (
OpenAIChatCompletionStreamingHandler,
)
from unittest.mock import MagicMock
streaming_handler = OpenAIChatCompletionStreamingHandler(
streaming_response=MagicMock(),
sync_stream=True,
)
response = streaming_handler.chunk_parser(
chunk={
"id": "e89b6501-8ac2-464c-9550-7cd3daf94350",
"object": "chat.completion.chunk",
"created": 1741037890,
"model": "deepseek-reasoner",
"system_fingerprint": "fp_5417b77867_prod0225",
"choices": [
{
"index": 0,
"delta": {"content": None, "reasoning_content": "."},
"logprobs": None,
"finish_reason": None,
}
],
}
)
assert response.choices[0].delta.reasoning_content == "."
def validate_response_url_citation(url_citation: ChatCompletionAnnotationURLCitation):
assert "end_index" in url_citation
assert "start_index" in url_citation
assert "url" in url_citation
def validate_web_search_annotations(annotations: ChatCompletionAnnotation):
"""validates litellm response contains web search annotations"""
print("annotations: ", annotations)
assert annotations is not None
assert isinstance(annotations, list)
for annotation in annotations:
assert annotation["type"] == "url_citation"
url_citation: ChatCompletionAnnotationURLCitation = annotation["url_citation"]
validate_response_url_citation(url_citation)
@pytest.mark.flaky(reruns=3)
def test_openai_web_search():
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
litellm._turn_on_debug()
response = litellm.completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
)
print("litellm response: ", response.model_dump_json(indent=4))
message = response.choices[0].message
if hasattr(message, "annotations"):
annotations: ChatCompletionAnnotation = message.annotations
validate_web_search_annotations(annotations)
def test_openai_web_search_streaming():
"""Makes a simple web search request and validates the response contains web search annotations and all expected fields are present"""
# litellm._turn_on_debug()
test_openai_web_search: Optional[ChatCompletionAnnotation] = None
response = litellm.completion(
model="openai/gpt-4o-search-preview",
messages=[
{
"role": "user",
"content": "What was a positive news story from today?",
}
],
stream=True,
)
for chunk in response:
print("litellm response chunk: ", chunk)
if (
hasattr(chunk.choices[0].delta, "annotations")
and chunk.choices[0].delta.annotations is not None
):
test_openai_web_search = chunk.choices[0].delta.annotations
# Assert this request has at-least one web search annotation
if test_openai_web_search is not None:
validate_web_search_annotations(test_openai_web_search)
class TestOpenAIGPT4OAudioTranscription(BaseLLMAudioTranscriptionTest):
def get_base_audio_transcription_call_args(self) -> dict:
return {
"model": "openai/gpt-4o-transcribe",
}
def get_custom_llm_provider(self) -> litellm.LlmProviders:
return litellm.LlmProviders.OPENAI
@pytest.mark.asyncio
@pytest.mark.parametrize("model", ["gpt-4o"])
async def test_openai_pdf_url(model):
from litellm.utils import return_raw_request, CallTypes
request = return_raw_request(CallTypes.completion, {
"model": model,
"messages": [{"role": "user", "content": [{"type": "text", "text": "What is the first page of the PDF?"}, {"type": "file", "file": {"file_id": "https://arxiv.org/pdf/2303.08774"}}]}],
})
print("request: ", request)
assert "file_data" in request["raw_request_body"]["messages"][0]["content"][1]["file"]
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_openai_codex_stream(sync_mode):
from litellm.main import stream_chunk_builder
kwargs = {
"model": "openai/codex-mini-latest",
"messages": [{"role": "user", "content": "Hey!"}],
"stream": True,
}
chunks = []
if sync_mode:
response = litellm.completion(
**kwargs
)
for chunk in response:
chunks.append(chunk)
else:
response = await litellm.acompletion(
**kwargs
)
async for chunk in response:
chunks.append(chunk)
complete_response = stream_chunk_builder(chunks=chunks)
print("complete_response: ", complete_response)
assert complete_response.choices[0].message.content is not None
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_openai_codex(sync_mode):
from litellm import acompletion
kwargs = {
"model": "openai/codex-mini-latest",
"messages": [{"role": "user", "content": "Hey!"}],
}
if sync_mode:
response = litellm.completion(
**kwargs
)
else:
response = await litellm.acompletion(
**kwargs
)
print("response: ", response)
assert response.choices[0].message.content is not None |