File size: 7,661 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
import os
import sys
from unittest.mock import patch, MagicMock

import pytest

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path

import litellm
from litellm import completion
from litellm.utils import get_optional_params


class TestPerplexityReasoning:
    """
    Test suite for Perplexity Sonar reasoning models with reasoning_effort parameter
    """

    @pytest.mark.parametrize(
        "model,reasoning_effort",
        [
            ("perplexity/sonar-reasoning", "low"),
            ("perplexity/sonar-reasoning", "medium"),
            ("perplexity/sonar-reasoning", "high"),
            ("perplexity/sonar-reasoning-pro", "low"),
            ("perplexity/sonar-reasoning-pro", "medium"),
            ("perplexity/sonar-reasoning-pro", "high"),
        ]
    )
    def test_perplexity_reasoning_effort_parameter_mapping(self, model, reasoning_effort):
        """
        Test that reasoning_effort parameter is correctly mapped for Perplexity Sonar reasoning models
        """
        # Set up local model cost map
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")

        # Get provider and optional params
        _, provider, _, _ = litellm.get_llm_provider(model=model)
        
        optional_params = get_optional_params(
            model=model,
            custom_llm_provider=provider,
            reasoning_effort=reasoning_effort,
        )
        
        # Verify that reasoning_effort is preserved in optional_params for Perplexity
        assert "reasoning_effort" in optional_params
        assert optional_params["reasoning_effort"] == reasoning_effort

    @pytest.mark.parametrize(
        "model",
        [
            "perplexity/sonar-reasoning",
            "perplexity/sonar-reasoning-pro",
        ]
    )
    def test_perplexity_reasoning_effort_mock_completion(self, model):
        """
        Test that reasoning_effort is correctly passed in actual completion call (mocked)
        """
        from openai import OpenAI
        from openai.types.chat.chat_completion import ChatCompletion
        
        litellm.set_verbose = True
        
        # Mock successful response with reasoning content
        response_object = {
            "id": "cmpl-test",
            "object": "chat.completion",
            "created": 1677652288,
            "model": model.split("/")[1],
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": "This is a test response from the reasoning model.",
                        "reasoning_content": "Let me think about this step by step...",
                    },
                    "finish_reason": "stop",
                }
            ],
            "usage": {
                "prompt_tokens": 9,
                "completion_tokens": 20,
                "total_tokens": 29,
                "completion_tokens_details": {
                    "reasoning_tokens": 15
                }
            },
        }

        pydantic_obj = ChatCompletion(**response_object)

        def _return_pydantic_obj(*args, **kwargs):
            new_response = MagicMock()
            new_response.headers = {"content-type": "application/json"}
            new_response.parse.return_value = pydantic_obj
            return new_response

        openai_client = OpenAI(api_key="fake-api-key")

        with patch.object(
            openai_client.chat.completions.with_raw_response, "create", side_effect=_return_pydantic_obj
        ) as mock_client:
            
            response = completion(
                model=model,
                messages=[{"role": "user", "content": "Hello, please think about this carefully."}],
                reasoning_effort="high",
                client=openai_client,
            )
            
            # Verify the call was made
            assert mock_client.called
            
            # Get the request data from the mock call
            call_args = mock_client.call_args
            request_data = call_args.kwargs
            
            # Verify reasoning_effort was included in the request
            assert "reasoning_effort" in request_data
            assert request_data["reasoning_effort"] == "high"
            
            # Verify response structure
            assert response.choices[0].message.content is not None
            assert response.choices[0].message.content == "This is a test response from the reasoning model."

    def test_perplexity_reasoning_models_support_reasoning(self):
        """
        Test that Perplexity Sonar reasoning models are correctly identified as supporting reasoning
        """
        from litellm.utils import supports_reasoning
        
        # Set up local model cost map
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        
        reasoning_models = [
            "perplexity/sonar-reasoning",
            "perplexity/sonar-reasoning-pro",
        ]
        
        for model in reasoning_models:
            assert supports_reasoning(model, None), f"{model} should support reasoning"

    def test_perplexity_non_reasoning_models_dont_support_reasoning(self):
        """
        Test that non-reasoning Perplexity models don't support reasoning
        """
        from litellm.utils import supports_reasoning
        
        # Set up local model cost map
        os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
        litellm.model_cost = litellm.get_model_cost_map(url="")
        
        non_reasoning_models = [
            "perplexity/sonar",
            "perplexity/sonar-pro",
            "perplexity/llama-3.1-sonar-large-128k-chat",
            "perplexity/mistral-7b-instruct",
        ]
        
        for model in non_reasoning_models:
            # These models should not support reasoning (should return False or raise exception)
            try:
                result = supports_reasoning(model, None)
                # If it doesn't raise an exception, it should return False
                assert result is False, f"{model} should not support reasoning"
            except Exception:
                # If it raises an exception, that's also acceptable behavior
                pass

    @pytest.mark.parametrize(
        "model,expected_api_base",
        [
            ("perplexity/sonar-reasoning", "https://api.perplexity.ai"),
            ("perplexity/sonar-reasoning-pro", "https://api.perplexity.ai"),
        ]
    )
    def test_perplexity_reasoning_api_base_configuration(self, model, expected_api_base):
        """
        Test that Perplexity reasoning models use the correct API base
        """
        from litellm.llms.perplexity.chat.transformation import PerplexityChatConfig
        
        config = PerplexityChatConfig()
        api_base, _ = config._get_openai_compatible_provider_info(
            api_base=None, api_key="test-key"
        )
        
        assert api_base == expected_api_base

    def test_perplexity_reasoning_effort_in_supported_params(self):
        """
        Test that reasoning_effort is in the list of supported parameters for Perplexity
        """
        from litellm.llms.perplexity.chat.transformation import PerplexityChatConfig
        
        config = PerplexityChatConfig()
        supported_params = config.get_supported_openai_params(model="perplexity/sonar-reasoning")
        
        assert "reasoning_effort" in supported_params