File size: 31,332 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#### What this tests ####
#    This tests if prompts are being correctly formatted
import os
import sys

import pytest

sys.path.insert(0, os.path.abspath("../.."))

from typing import Union

# from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
import litellm
from litellm import completion
from litellm.litellm_core_utils.prompt_templates.factory import (
    _bedrock_tools_pt,
    anthropic_messages_pt,
    anthropic_pt,
    claude_2_1_pt,
    convert_to_anthropic_image_obj,
    convert_url_to_base64,
    llama_2_chat_pt,
    prompt_factory,
)
from litellm.litellm_core_utils.prompt_templates.common_utils import (
    get_completion_messages,
)
from litellm.llms.vertex_ai.gemini.transformation import (
    _gemini_convert_messages_with_history,
)
from unittest.mock import AsyncMock, MagicMock, patch


def test_llama_3_prompt():
    messages = [
        {"role": "system", "content": "You are a good bot"},
        {"role": "user", "content": "Hey, how's it going?"},
    ]
    received_prompt = prompt_factory(
        model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages
    )
    print(f"received_prompt: {received_prompt}")

    expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
    assert received_prompt == expected_prompt


def test_codellama_prompt_format():
    messages = [
        {"role": "system", "content": "You are a good bot"},
        {"role": "user", "content": "Hey, how's it going?"},
    ]
    expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
    assert llama_2_chat_pt(messages) == expected_prompt


def test_claude_2_1_pt_formatting():
    # Test case: User only, should add Assistant
    messages = [{"role": "user", "content": "Hello"}]
    expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
    assert claude_2_1_pt(messages) == expected_prompt

    # Test case: System, User, and Assistant "pre-fill" sequence,
    #            Should return pre-fill
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
        {"role": "assistant", "content": "{"},
    ]
    expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
    assert claude_2_1_pt(messages) == expected_prompt

    # Test case: System, Assistant sequence, should insert blank Human message
    #            before Assistant pre-fill
    messages = [
        {"role": "system", "content": "You are a storyteller."},
        {"role": "assistant", "content": "Once upon a time, there "},
    ]
    expected_prompt = (
        "You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
    )
    assert claude_2_1_pt(messages) == expected_prompt

    # Test case: System, User sequence
    messages = [
        {"role": "system", "content": "System reboot"},
        {"role": "user", "content": "Is everything okay?"},
    ]
    expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
    assert claude_2_1_pt(messages) == expected_prompt


def test_anthropic_pt_formatting():
    # Test case: User only, should add Assistant
    messages = [{"role": "user", "content": "Hello"}]
    expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
    assert anthropic_pt(messages) == expected_prompt

    # Test case: System, User, and Assistant "pre-fill" sequence,
    #            Should return pre-fill
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
        {"role": "assistant", "content": "{"},
    ]
    expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
    assert anthropic_pt(messages) == expected_prompt

    # Test case: System, Assistant sequence, should NOT insert blank Human message
    #            before Assistant pre-fill, because "System" messages are Human
    #            messages wrapped with <admin></admin>
    messages = [
        {"role": "system", "content": "You are a storyteller."},
        {"role": "assistant", "content": "Once upon a time, there "},
    ]
    expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
    assert anthropic_pt(messages) == expected_prompt

    # Test case: System, User sequence
    messages = [
        {"role": "system", "content": "System reboot"},
        {"role": "user", "content": "Is everything okay?"},
    ]
    expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
    assert anthropic_pt(messages) == expected_prompt


def test_anthropic_messages_nested_pt():
    from litellm.types.llms.anthropic import (
        AnthopicMessagesAssistantMessageParam,
        AnthropicMessagesUserMessageParam,
    )

    messages = [
        {"content": [{"text": "here is a task", "type": "text"}], "role": "user"},
        {
            "content": [{"text": "sure happy to help", "type": "text"}],
            "role": "assistant",
        },
        {
            "content": [
                {
                    "text": "Here is a screenshot of the current desktop with the "
                    "mouse coordinates (500, 350). Please select an action "
                    "from the provided schema.",
                    "type": "text",
                }
            ],
            "role": "user",
        },
    ]

    new_messages = anthropic_messages_pt(
        messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
    )

    assert isinstance(new_messages[1]["content"][0]["text"], str)


# codellama_prompt_format()
def test_bedrock_tool_calling_pt():
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    converted_tools = _bedrock_tools_pt(tools=tools)

    print(converted_tools)


def test_convert_url_to_img():
    response_url = convert_url_to_base64(
        url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"
    )

    assert "image/jpeg" in response_url


@pytest.mark.parametrize(
    "url, expected_media_type",
    [
        ("", "image/jpeg"),
        ("data:application/pdf;base64,1234", "application/pdf"),
        (r"data:image\/jpeg;base64,1234", "image/jpeg"),
    ],
)
def test_base64_image_input(url, expected_media_type):
    response = convert_to_anthropic_image_obj(openai_image_url=url, format=None)

    assert response["media_type"] == expected_media_type


def test_anthropic_messages_tool_call():
    messages = [
        {
            "role": "user",
            "content": "Would development of a software platform be under ASC 350-40 or ASC 985?",
        },
        {
            "role": "assistant",
            "content": "",
            "tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
            "tool_calls": [
                {
                    "id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
                    "function": {
                        "arguments": '{"completed_steps": [], "next_steps": [{"tool_name": "AccountingResearchTool", "description": "Research ASC 350-40 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Research ASC 985 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}], "learnings": [], "potential_issues": ["The distinction between the two standards might not be clear-cut for all types of software development.", "There might be specific circumstances or details about the software platform that could affect which standard applies."], "missing_info": ["Specific details about the type of software platform being developed (e.g., for internal use or for sale).", "Whether the entity developing the software is also the end-user or if it\'s being developed for external customers."], "done": false, "required_formatting": null}',
                        "name": "TaskPlanningTool",
                    },
                    "type": "function",
                }
            ],
        },
        {
            "role": "function",
            "content": '{"completed_steps":[],"next_steps":[{"tool_name":"AccountingResearchTool","description":"Research ASC 350-40 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Research ASC 985 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}],"formatting_step":null}',
            "name": "TaskPlanningTool",
            "tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
        },
    ]

    translated_messages = anthropic_messages_pt(
        messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
    )

    print(translated_messages)

    assert (
        translated_messages[-1]["content"][0]["tool_use_id"]
        == "bc8cb4b6-88c4-4138-8993-3a9d9cd51656"
    )


def test_anthropic_cache_controls_pt():
    "see anthropic docs for this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation"
    messages = [
        # marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What are the key terms and conditions in this agreement?",
                    "cache_control": {"type": "ephemeral"},
                }
            ],
        },
        {
            "role": "assistant",
            "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
        },
        # The final turn is marked with cache-control, for continuing in followups.
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "What are the key terms and conditions in this agreement?",
                    "cache_control": {"type": "ephemeral"},
                }
            ],
        },
        {
            "role": "assistant",
            "content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
            "cache_control": {"type": "ephemeral"},
        },
    ]

    translated_messages = anthropic_messages_pt(
        messages, model="claude-3-5-sonnet-20240620", llm_provider="anthropic"
    )

    for i, msg in enumerate(translated_messages):
        if i == 0:
            assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
        elif i == 1:
            assert "cache_controls" not in msg["content"][0]
        elif i == 2:
            assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
        elif i == 3:
            assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}

    print("translated_messages: ", translated_messages)


def test_anthropic_cache_controls_tool_calls_pt():
    """
    Tests that cache_control is properly set in tool_calls when converting messages
    for the Anthropic API.
    """
    messages = [
        {
            "role": "user",
            "content": "Can you help me get the weather?",
        },
        {
            "role": "assistant",
            "content": "",
            "tool_calls": [
                {
                    "id": "weather-tool-id-123",
                    "function": {
                        "arguments": '{"location": "San Francisco"}',
                        "name": "get_weather",
                    },
                    "type": "function",
                }
            ],
            "cache_control": {"type": "ephemeral"},
        },
        {
            "role": "function",
            "content": '{"temperature": 72, "unit": "fahrenheit", "description": "sunny"}',
            "name": "get_weather",
            "tool_call_id": "weather-tool-id-123",
            "cache_control": {"type": "ephemeral"},
        },
    ]

    translated_messages = anthropic_messages_pt(
        messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
    )

    print("Translated tool call messages:", translated_messages)

    assert translated_messages[0]["role"] == "user"

    assert translated_messages[1]["role"] == "assistant"
    for content_item in translated_messages[1]["content"]:
        if content_item["type"] == "tool_use":
            assert "cache_control" not in content_item
            assert content_item["name"] == "get_weather"

    assert translated_messages[2]["role"] == "user"
    for content_item in translated_messages[2]["content"]:
        if content_item["type"] == "tool_result":
            assert content_item["cache_control"] == {"type": "ephemeral"}


@pytest.mark.parametrize("provider", ["bedrock", "anthropic"])
def test_bedrock_parallel_tool_calling_pt(provider):
    """
    Make sure parallel tool call blocks are merged correctly - https://github.com/BerriAI/litellm/issues/5277
    """
    from litellm.litellm_core_utils.prompt_templates.factory import (
        _bedrock_converse_messages_pt,
    )
    from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message

    messages = [
        {
            "role": "user",
            "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
        },
        Message(
            content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
            role="assistant",
            tool_calls=[
                ChatCompletionMessageToolCall(
                    index=1,
                    function=Function(
                        arguments='{"city": "New York"}',
                        name="get_current_weather",
                    ),
                    id="tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
                    type="function",
                ),
                ChatCompletionMessageToolCall(
                    index=2,
                    function=Function(
                        arguments='{"city": "London"}',
                        name="get_current_weather",
                    ),
                    id="tooluse_VB9nk7UGRniVzGcaj6xrAQ",
                    type="function",
                ),
            ],
            function_call=None,
        ),
        {
            "tool_call_id": "tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
            "role": "tool",
            "name": "get_current_weather",
            "content": "25 degrees celsius.",
        },
        {
            "tool_call_id": "tooluse_VB9nk7UGRniVzGcaj6xrAQ",
            "role": "tool",
            "name": "get_current_weather",
            "content": "28 degrees celsius.",
        },
    ]

    if provider == "bedrock":
        translated_messages = _bedrock_converse_messages_pt(
            messages=messages,
            model="anthropic.claude-3-sonnet-20240229-v1:0",
            llm_provider="bedrock",
        )
    else:
        translated_messages = anthropic_messages_pt(
            messages=messages,
            model="claude-3-sonnet-20240229-v1:0",
            llm_provider=provider,
        )
    print(translated_messages)

    number_of_messages = len(translated_messages)

    # assert last 2 messages are not the same role
    assert (
        translated_messages[number_of_messages - 1]["role"]
        != translated_messages[number_of_messages - 2]["role"]
    )


def test_vertex_only_image_user_message():
    base64_image = "/9j/2wCEAAgGBgcGBQ"

    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image_url",
                    "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
                },
            ],
        },
    ]

    response = _gemini_convert_messages_with_history(messages=messages)

    expected_response = [
        {
            "role": "user",
            "parts": [
                {
                    "inline_data": {
                        "data": "/9j/2wCEAAgGBgcGBQ",
                        "mime_type": "image/jpeg",
                    }
                },
                {"text": " "},
            ],
        }
    ]

    assert len(response) == len(expected_response)
    for idx, content in enumerate(response):
        assert (
            content == expected_response[idx]
        ), "Invalid gemini input. Got={}, Expected={}".format(
            content, expected_response[idx]
        )


def test_convert_url():
    convert_url_to_base64("https://picsum.photos/id/237/200/300")


def test_azure_tool_call_invoke_helper():
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the weather in Copenhagen?"},
        {"role": "assistant", "function_call": {"name": "get_weather"}},
    ]

    transformed_messages = litellm.AzureOpenAIConfig().transform_request(
        model="gpt-4o",
        messages=messages,
        optional_params={},
        litellm_params={},
        headers={},
    )

    assert transformed_messages["messages"] == [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the weather in Copenhagen?"},
        {
            "role": "assistant",
            "function_call": {"name": "get_weather", "arguments": ""},
        },
    ]


@pytest.mark.parametrize(
    "messages, expected_messages, user_continue_message, assistant_continue_message",
    [
        (
            [
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Hello! How can I assist you today?"},
                {"role": "user", "content": "What is Databricks?"},
                {"role": "user", "content": "What is Azure?"},
                {"role": "assistant", "content": "I don't know anyything, do you?"},
            ],
            [
                {"role": "user", "content": "Hello!"},
                {
                    "role": "assistant",
                    "content": "Hello! How can I assist you today?",
                },
                {"role": "user", "content": "What is Databricks?"},
                {
                    "role": "assistant",
                    "content": "Please continue.",
                },
                {"role": "user", "content": "What is Azure?"},
                {
                    "role": "assistant",
                    "content": "I don't know anyything, do you?",
                },
                {
                    "role": "user",
                    "content": "Please continue.",
                },
            ],
            None,
            None,
        ),
        (
            [
                {"role": "user", "content": "Hello!"},
            ],
            [
                {"role": "user", "content": "Hello!"},
            ],
            None,
            None,
        ),
        (
            [
                {"role": "user", "content": "Hello!"},
                {"role": "user", "content": "What is Databricks?"},
            ],
            [
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Please continue."},
                {"role": "user", "content": "What is Databricks?"},
            ],
            None,
            None,
        ),
        (
            [
                {"role": "user", "content": "Hello!"},
                {"role": "user", "content": "What is Databricks?"},
                {"role": "user", "content": "What is Azure?"},
            ],
            [
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Please continue."},
                {"role": "user", "content": "What is Databricks?"},
                {
                    "role": "assistant",
                    "content": "Please continue.",
                },
                {"role": "user", "content": "What is Azure?"},
            ],
            None,
            None,
        ),
        (
            [
                {"role": "user", "content": "Hello!"},
                {
                    "role": "assistant",
                    "content": "Hello! How can I assist you today?",
                },
                {"role": "user", "content": "What is Databricks?"},
                {"role": "user", "content": "What is Azure?"},
                {"role": "assistant", "content": "I don't know anyything, do you?"},
                {"role": "assistant", "content": "I can't repeat sentences."},
            ],
            [
                {"role": "user", "content": "Hello!"},
                {
                    "role": "assistant",
                    "content": "Hello! How can I assist you today?",
                },
                {"role": "user", "content": "What is Databricks?"},
                {
                    "role": "assistant",
                    "content": "Please continue",
                },
                {"role": "user", "content": "What is Azure?"},
                {
                    "role": "assistant",
                    "content": "I don't know anyything, do you?",
                },
                {
                    "role": "user",
                    "content": "Ok",
                },
                {
                    "role": "assistant",
                    "content": "I can't repeat sentences.",
                },
                {"role": "user", "content": "Ok"},
            ],
            {
                "role": "user",
                "content": "Ok",
            },
            {
                "role": "assistant",
                "content": "Please continue",
            },
        ),
    ],
)
def test_ensure_alternating_roles(
    messages, expected_messages, user_continue_message, assistant_continue_message
):

    messages = get_completion_messages(
        messages=messages,
        assistant_continue_message=assistant_continue_message,
        user_continue_message=user_continue_message,
        ensure_alternating_roles=True,
    )

    print(messages)

    assert messages == expected_messages


def test_alternating_roles_e2e():
    from litellm.llms.custom_httpx.http_handler import HTTPHandler
    import json

    litellm.set_verbose = True
    http_handler = HTTPHandler()

    with patch.object(http_handler, "post", new=MagicMock()) as mock_post:
        try: 
            response = litellm.completion(
                **{
                    "model": "databricks/databricks-meta-llama-3-1-70b-instruct",
                    "messages": [
                        {"role": "user", "content": "Hello!"},
                        {
                            "role": "assistant",
                            "content": "Hello! How can I assist you today?",
                        },
                        {"role": "user", "content": "What is Databricks?"},
                        {"role": "user", "content": "What is Azure?"},
                        {"role": "assistant", "content": "I don't know anyything, do you?"},
                        {"role": "assistant", "content": "I can't repeat sentences."},
                    ],
                    "user_continue_message": {
                        "role": "user",
                        "content": "Ok",
                    },
                    "assistant_continue_message": {
                        "role": "assistant",
                        "content": "Please continue",
                    },
                    "ensure_alternating_roles": True,
                },
                client=http_handler,
            )
        except Exception as e:
            print(f"error: {e}")

        assert mock_post.call_args.kwargs["data"] == json.dumps(
            {
                "model": "databricks-meta-llama-3-1-70b-instruct",
                "messages": [
                    {"role": "user", "content": "Hello!"},
                    {
                        "role": "assistant",
                        "content": "Hello! How can I assist you today?",
                    },
                    {"role": "user", "content": "What is Databricks?"},
                    {
                        "role": "assistant",
                        "content": "Please continue",
                    },
                    {"role": "user", "content": "What is Azure?"},
                    {
                        "role": "assistant",
                        "content": "I don't know anyything, do you?",
                    },
                    {
                        "role": "user",
                        "content": "Ok",
                    },
                    {
                        "role": "assistant",
                        "content": "I can't repeat sentences.",
                    },
                    {
                        "role": "user",
                        "content": "Ok",
                    },
                ]
            }
        )


def test_just_system_message():
    from litellm.litellm_core_utils.prompt_templates.factory import (
        _bedrock_converse_messages_pt,
    )

    with pytest.raises(litellm.BadRequestError) as e:
        _bedrock_converse_messages_pt(
            messages=[],
            model="anthropic.claude-3-sonnet-20240229-v1:0",
            llm_provider="bedrock",
        )
        assert "bedrock requires at least one non-system message" in str(e.value)


def test_convert_generic_image_chunk_to_openai_image_obj():
    from litellm.litellm_core_utils.prompt_templates.factory import (
        convert_generic_image_chunk_to_openai_image_obj,
        convert_to_anthropic_image_obj,
    )

    url = "https://i.pinimg.com/736x/b4/b1/be/b4b1becad04d03a9071db2817fc9fe77.jpg"
    image_obj = convert_to_anthropic_image_obj(url, format=None)
    url_str = convert_generic_image_chunk_to_openai_image_obj(image_obj)
    image_obj = convert_to_anthropic_image_obj(url_str, format=None)
    print(image_obj)


def test_hf_chat_template():
    from litellm.litellm_core_utils.prompt_templates.factory import (
        hf_chat_template,
    )

    model = "llama/arn:aws:bedrock:us-east-1:1234:imported-model/45d34re"
    litellm.register_prompt_template(
        model=model,
        tokenizer_config={
            "add_bos_token": True,
            "add_eos_token": False,
            "bos_token": {
                "__type": "AddedToken",
                "content": "",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "clean_up_tokenization_spaces": False,
            "eos_token": {
                "__type": "AddedToken",
                "content": "",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "legacy": True,
            "model_max_length": 16384,
            "pad_token": {
                "__type": "AddedToken",
                "content": "",
                "lstrip": False,
                "normalized": True,
                "rstrip": False,
                "single_word": False,
            },
            "sp_model_kwargs": {},
            "unk_token": None,
            "tokenizer_class": "LlamaTokenizerFast",
            "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{' ' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{%- set ns.is_first = true -%}{%- else %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{{' '}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{' ' + message['content'] + ' '}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{' ' + content + ' '}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{' ' + message['content'] + ' '}}{%- set ns.is_output_first = false %}{%- else %}{{' ' + message['content'] + ' '}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{' '}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{' '}}{% endif %}",
        },
    )

    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the weather in Copenhagen?"},
    ]
    chat_template = hf_chat_template(model=model, messages=messages)
    print(chat_template)
    assert (
        chat_template.rstrip()
        == "You are a helpful assistant. What is the weather in Copenhagen?"
    )


def test_ollama_pt():
    from litellm.litellm_core_utils.prompt_templates.factory import ollama_pt

    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Hello!"},
    ]
    prompt = ollama_pt(model="ollama/llama3.1", messages=messages)
    print(prompt)