Spaces:
Configuration error
Configuration error
File size: 31,332 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
#### What this tests ####
# This tests if prompts are being correctly formatted
import os
import sys
import pytest
sys.path.insert(0, os.path.abspath("../.."))
from typing import Union
# from litellm.litellm_core_utils.prompt_templates.factory import prompt_factory
import litellm
from litellm import completion
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_tools_pt,
anthropic_messages_pt,
anthropic_pt,
claude_2_1_pt,
convert_to_anthropic_image_obj,
convert_url_to_base64,
llama_2_chat_pt,
prompt_factory,
)
from litellm.litellm_core_utils.prompt_templates.common_utils import (
get_completion_messages,
)
from litellm.llms.vertex_ai.gemini.transformation import (
_gemini_convert_messages_with_history,
)
from unittest.mock import AsyncMock, MagicMock, patch
def test_llama_3_prompt():
messages = [
{"role": "system", "content": "You are a good bot"},
{"role": "user", "content": "Hey, how's it going?"},
]
received_prompt = prompt_factory(
model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages
)
print(f"received_prompt: {received_prompt}")
expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
assert received_prompt == expected_prompt
def test_codellama_prompt_format():
messages = [
{"role": "system", "content": "You are a good bot"},
{"role": "user", "content": "Hey, how's it going?"},
]
expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
assert llama_2_chat_pt(messages) == expected_prompt
def test_claude_2_1_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should insert blank Human message
# before Assistant pre-fill
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = (
"You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
)
assert claude_2_1_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
assert claude_2_1_pt(messages) == expected_prompt
def test_anthropic_pt_formatting():
# Test case: User only, should add Assistant
messages = [{"role": "user", "content": "Hello"}]
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User, and Assistant "pre-fill" sequence,
# Should return pre-fill
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
{"role": "assistant", "content": "{"},
]
expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
assert anthropic_pt(messages) == expected_prompt
# Test case: System, Assistant sequence, should NOT insert blank Human message
# before Assistant pre-fill, because "System" messages are Human
# messages wrapped with <admin></admin>
messages = [
{"role": "system", "content": "You are a storyteller."},
{"role": "assistant", "content": "Once upon a time, there "},
]
expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
assert anthropic_pt(messages) == expected_prompt
# Test case: System, User sequence
messages = [
{"role": "system", "content": "System reboot"},
{"role": "user", "content": "Is everything okay?"},
]
expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
assert anthropic_pt(messages) == expected_prompt
def test_anthropic_messages_nested_pt():
from litellm.types.llms.anthropic import (
AnthopicMessagesAssistantMessageParam,
AnthropicMessagesUserMessageParam,
)
messages = [
{"content": [{"text": "here is a task", "type": "text"}], "role": "user"},
{
"content": [{"text": "sure happy to help", "type": "text"}],
"role": "assistant",
},
{
"content": [
{
"text": "Here is a screenshot of the current desktop with the "
"mouse coordinates (500, 350). Please select an action "
"from the provided schema.",
"type": "text",
}
],
"role": "user",
},
]
new_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
assert isinstance(new_messages[1]["content"][0]["text"], str)
# codellama_prompt_format()
def test_bedrock_tool_calling_pt():
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
converted_tools = _bedrock_tools_pt(tools=tools)
print(converted_tools)
def test_convert_url_to_img():
response_url = convert_url_to_base64(
url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"
)
assert "image/jpeg" in response_url
@pytest.mark.parametrize(
"url, expected_media_type",
[
("", "image/jpeg"),
("data:application/pdf;base64,1234", "application/pdf"),
(r"data:image\/jpeg;base64,1234", "image/jpeg"),
],
)
def test_base64_image_input(url, expected_media_type):
response = convert_to_anthropic_image_obj(openai_image_url=url, format=None)
assert response["media_type"] == expected_media_type
def test_anthropic_messages_tool_call():
messages = [
{
"role": "user",
"content": "Would development of a software platform be under ASC 350-40 or ASC 985?",
},
{
"role": "assistant",
"content": "",
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
"tool_calls": [
{
"id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
"function": {
"arguments": '{"completed_steps": [], "next_steps": [{"tool_name": "AccountingResearchTool", "description": "Research ASC 350-40 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Research ASC 985 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}], "learnings": [], "potential_issues": ["The distinction between the two standards might not be clear-cut for all types of software development.", "There might be specific circumstances or details about the software platform that could affect which standard applies."], "missing_info": ["Specific details about the type of software platform being developed (e.g., for internal use or for sale).", "Whether the entity developing the software is also the end-user or if it\'s being developed for external customers."], "done": false, "required_formatting": null}',
"name": "TaskPlanningTool",
},
"type": "function",
}
],
},
{
"role": "function",
"content": '{"completed_steps":[],"next_steps":[{"tool_name":"AccountingResearchTool","description":"Research ASC 350-40 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Research ASC 985 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}],"formatting_step":null}',
"name": "TaskPlanningTool",
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
print(translated_messages)
assert (
translated_messages[-1]["content"][0]["tool_use_id"]
== "bc8cb4b6-88c4-4138-8993-3a9d9cd51656"
)
def test_anthropic_cache_controls_pt():
"see anthropic docs for this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation"
messages = [
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
{
"role": "assistant",
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
},
# The final turn is marked with cache-control, for continuing in followups.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
{
"role": "assistant",
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
"cache_control": {"type": "ephemeral"},
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-5-sonnet-20240620", llm_provider="anthropic"
)
for i, msg in enumerate(translated_messages):
if i == 0:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
elif i == 1:
assert "cache_controls" not in msg["content"][0]
elif i == 2:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
elif i == 3:
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
print("translated_messages: ", translated_messages)
def test_anthropic_cache_controls_tool_calls_pt():
"""
Tests that cache_control is properly set in tool_calls when converting messages
for the Anthropic API.
"""
messages = [
{
"role": "user",
"content": "Can you help me get the weather?",
},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "weather-tool-id-123",
"function": {
"arguments": '{"location": "San Francisco"}',
"name": "get_weather",
},
"type": "function",
}
],
"cache_control": {"type": "ephemeral"},
},
{
"role": "function",
"content": '{"temperature": 72, "unit": "fahrenheit", "description": "sunny"}',
"name": "get_weather",
"tool_call_id": "weather-tool-id-123",
"cache_control": {"type": "ephemeral"},
},
]
translated_messages = anthropic_messages_pt(
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
)
print("Translated tool call messages:", translated_messages)
assert translated_messages[0]["role"] == "user"
assert translated_messages[1]["role"] == "assistant"
for content_item in translated_messages[1]["content"]:
if content_item["type"] == "tool_use":
assert "cache_control" not in content_item
assert content_item["name"] == "get_weather"
assert translated_messages[2]["role"] == "user"
for content_item in translated_messages[2]["content"]:
if content_item["type"] == "tool_result":
assert content_item["cache_control"] == {"type": "ephemeral"}
@pytest.mark.parametrize("provider", ["bedrock", "anthropic"])
def test_bedrock_parallel_tool_calling_pt(provider):
"""
Make sure parallel tool call blocks are merged correctly - https://github.com/BerriAI/litellm/issues/5277
"""
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
Message(
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
index=1,
function=Function(
arguments='{"city": "New York"}',
name="get_current_weather",
),
id="tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
type="function",
),
ChatCompletionMessageToolCall(
index=2,
function=Function(
arguments='{"city": "London"}',
name="get_current_weather",
),
id="tooluse_VB9nk7UGRniVzGcaj6xrAQ",
type="function",
),
],
function_call=None,
),
{
"tool_call_id": "tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
"role": "tool",
"name": "get_current_weather",
"content": "25 degrees celsius.",
},
{
"tool_call_id": "tooluse_VB9nk7UGRniVzGcaj6xrAQ",
"role": "tool",
"name": "get_current_weather",
"content": "28 degrees celsius.",
},
]
if provider == "bedrock":
translated_messages = _bedrock_converse_messages_pt(
messages=messages,
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
else:
translated_messages = anthropic_messages_pt(
messages=messages,
model="claude-3-sonnet-20240229-v1:0",
llm_provider=provider,
)
print(translated_messages)
number_of_messages = len(translated_messages)
# assert last 2 messages are not the same role
assert (
translated_messages[number_of_messages - 1]["role"]
!= translated_messages[number_of_messages - 2]["role"]
)
def test_vertex_only_image_user_message():
base64_image = "/9j/2wCEAAgGBgcGBQ"
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
},
]
response = _gemini_convert_messages_with_history(messages=messages)
expected_response = [
{
"role": "user",
"parts": [
{
"inline_data": {
"data": "/9j/2wCEAAgGBgcGBQ",
"mime_type": "image/jpeg",
}
},
{"text": " "},
],
}
]
assert len(response) == len(expected_response)
for idx, content in enumerate(response):
assert (
content == expected_response[idx]
), "Invalid gemini input. Got={}, Expected={}".format(
content, expected_response[idx]
)
def test_convert_url():
convert_url_to_base64("https://picsum.photos/id/237/200/300")
def test_azure_tool_call_invoke_helper():
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
{"role": "assistant", "function_call": {"name": "get_weather"}},
]
transformed_messages = litellm.AzureOpenAIConfig().transform_request(
model="gpt-4o",
messages=messages,
optional_params={},
litellm_params={},
headers={},
)
assert transformed_messages["messages"] == [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
{
"role": "assistant",
"function_call": {"name": "get_weather", "arguments": ""},
},
]
@pytest.mark.parametrize(
"messages, expected_messages, user_continue_message, assistant_continue_message",
[
(
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
],
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue.",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Please continue.",
},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
],
[
{"role": "user", "content": "Hello!"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{"role": "user", "content": "What is Databricks?"},
],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Please continue."},
{"role": "user", "content": "What is Databricks?"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Please continue."},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue.",
},
{"role": "user", "content": "What is Azure?"},
],
None,
None,
),
(
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
{"role": "assistant", "content": "I can't repeat sentences."},
],
[
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "I can't repeat sentences.",
},
{"role": "user", "content": "Ok"},
],
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "Please continue",
},
),
],
)
def test_ensure_alternating_roles(
messages, expected_messages, user_continue_message, assistant_continue_message
):
messages = get_completion_messages(
messages=messages,
assistant_continue_message=assistant_continue_message,
user_continue_message=user_continue_message,
ensure_alternating_roles=True,
)
print(messages)
assert messages == expected_messages
def test_alternating_roles_e2e():
from litellm.llms.custom_httpx.http_handler import HTTPHandler
import json
litellm.set_verbose = True
http_handler = HTTPHandler()
with patch.object(http_handler, "post", new=MagicMock()) as mock_post:
try:
response = litellm.completion(
**{
"model": "databricks/databricks-meta-llama-3-1-70b-instruct",
"messages": [
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{"role": "user", "content": "What is Azure?"},
{"role": "assistant", "content": "I don't know anyything, do you?"},
{"role": "assistant", "content": "I can't repeat sentences."},
],
"user_continue_message": {
"role": "user",
"content": "Ok",
},
"assistant_continue_message": {
"role": "assistant",
"content": "Please continue",
},
"ensure_alternating_roles": True,
},
client=http_handler,
)
except Exception as e:
print(f"error: {e}")
assert mock_post.call_args.kwargs["data"] == json.dumps(
{
"model": "databricks-meta-llama-3-1-70b-instruct",
"messages": [
{"role": "user", "content": "Hello!"},
{
"role": "assistant",
"content": "Hello! How can I assist you today?",
},
{"role": "user", "content": "What is Databricks?"},
{
"role": "assistant",
"content": "Please continue",
},
{"role": "user", "content": "What is Azure?"},
{
"role": "assistant",
"content": "I don't know anyything, do you?",
},
{
"role": "user",
"content": "Ok",
},
{
"role": "assistant",
"content": "I can't repeat sentences.",
},
{
"role": "user",
"content": "Ok",
},
]
}
)
def test_just_system_message():
from litellm.litellm_core_utils.prompt_templates.factory import (
_bedrock_converse_messages_pt,
)
with pytest.raises(litellm.BadRequestError) as e:
_bedrock_converse_messages_pt(
messages=[],
model="anthropic.claude-3-sonnet-20240229-v1:0",
llm_provider="bedrock",
)
assert "bedrock requires at least one non-system message" in str(e.value)
def test_convert_generic_image_chunk_to_openai_image_obj():
from litellm.litellm_core_utils.prompt_templates.factory import (
convert_generic_image_chunk_to_openai_image_obj,
convert_to_anthropic_image_obj,
)
url = "https://i.pinimg.com/736x/b4/b1/be/b4b1becad04d03a9071db2817fc9fe77.jpg"
image_obj = convert_to_anthropic_image_obj(url, format=None)
url_str = convert_generic_image_chunk_to_openai_image_obj(image_obj)
image_obj = convert_to_anthropic_image_obj(url_str, format=None)
print(image_obj)
def test_hf_chat_template():
from litellm.litellm_core_utils.prompt_templates.factory import (
hf_chat_template,
)
model = "llama/arn:aws:bedrock:us-east-1:1234:imported-model/45d34re"
litellm.register_prompt_template(
model=model,
tokenizer_config={
"add_bos_token": True,
"add_eos_token": False,
"bos_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"clean_up_tokenization_spaces": False,
"eos_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"legacy": True,
"model_max_length": 16384,
"pad_token": {
"__type": "AddedToken",
"content": "",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"sp_model_kwargs": {},
"unk_token": None,
"tokenizer_class": "LlamaTokenizerFast",
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{' ' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{%- set ns.is_first = true -%}{%- else %}{{' ' + tool['type'] + ' ' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + ' '}}{{' '}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{' ' + message['content'] + ' '}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{' ' + content + ' '}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{' ' + message['content'] + ' '}}{%- set ns.is_output_first = false %}{%- else %}{{' ' + message['content'] + ' '}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{' '}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{' '}}{% endif %}",
},
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the weather in Copenhagen?"},
]
chat_template = hf_chat_template(model=model, messages=messages)
print(chat_template)
assert (
chat_template.rstrip()
== "You are a helpful assistant. What is the weather in Copenhagen?"
)
def test_ollama_pt():
from litellm.litellm_core_utils.prompt_templates.factory import ollama_pt
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"},
]
prompt = ollama_pt(model="ollama/llama3.1", messages=messages)
print(prompt)
|