Spaces:
Configuration error
Configuration error
File size: 46,564 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 |
import asyncio
import copy
import json
import logging
import os
import sys
from typing import Any, Optional
from unittest.mock import MagicMock, patch
logging.basicConfig(level=logging.DEBUG)
sys.path.insert(0, os.path.abspath("../.."))
import litellm
from litellm import completion
from litellm.caching import InMemoryCache
litellm.num_retries = 3
litellm.success_callback = ["langfuse"]
os.environ["LANGFUSE_DEBUG"] = "True"
import time
import pytest
@pytest.fixture
def langfuse_client():
import langfuse
_langfuse_cache_key = (
f"{os.environ['LANGFUSE_PUBLIC_KEY']}-{os.environ['LANGFUSE_SECRET_KEY']}"
)
# use a in memory langfuse client for testing, RAM util on ci/cd gets too high when we init many langfuse clients
_cached_client = litellm.in_memory_llm_clients_cache.get_cache(_langfuse_cache_key)
if _cached_client:
langfuse_client = _cached_client
else:
langfuse_client = langfuse.Langfuse(
public_key=os.environ["LANGFUSE_PUBLIC_KEY"],
secret_key=os.environ["LANGFUSE_SECRET_KEY"],
host="https://us.cloud.langfuse.com",
)
litellm.in_memory_llm_clients_cache.set_cache(
key=_langfuse_cache_key,
value=langfuse_client,
)
print("NEW LANGFUSE CLIENT")
with patch(
"langfuse.Langfuse", MagicMock(return_value=langfuse_client)
) as mock_langfuse_client:
yield mock_langfuse_client()
def search_logs(log_file_path, num_good_logs=1):
"""
Searches the given log file for logs containing the "/api/public" string.
Parameters:
- log_file_path (str): The path to the log file to be searched.
Returns:
- None
Raises:
- Exception: If there are any bad logs found in the log file.
"""
import re
print("\n searching logs")
bad_logs = []
good_logs = []
all_logs = []
try:
with open(log_file_path, "r") as log_file:
lines = log_file.readlines()
print(f"searching logslines: {lines}")
for line in lines:
all_logs.append(line.strip())
if "/api/public" in line:
print("Found log with /api/public:")
print(line.strip())
print("\n\n")
match = re.search(
r'"POST /api/public/ingestion HTTP/1.1" (\d+) (\d+)',
line,
)
if match:
status_code = int(match.group(1))
print("STATUS CODE", status_code)
if (
status_code != 200
and status_code != 201
and status_code != 207
):
print("got a BAD log")
bad_logs.append(line.strip())
else:
good_logs.append(line.strip())
print("\nBad Logs")
print(bad_logs)
if len(bad_logs) > 0:
raise Exception(f"bad logs, Bad logs = {bad_logs}")
assert (
len(good_logs) == num_good_logs
), f"Did not get expected number of good logs, expected {num_good_logs}, got {len(good_logs)}. All logs \n {all_logs}"
print("\nGood Logs")
print(good_logs)
if len(good_logs) <= 0:
raise Exception(
f"There were no Good Logs from Langfuse. No logs with /api/public status 200. \nAll logs:{all_logs}"
)
except Exception as e:
raise e
def pre_langfuse_setup():
"""
Set up the logging for the 'pre_langfuse_setup' function.
"""
# sends logs to langfuse.log
import logging
# Configure the logging to write to a file
logging.basicConfig(filename="langfuse.log", level=logging.DEBUG)
logger = logging.getLogger()
# Add a FileHandler to the logger
file_handler = logging.FileHandler("langfuse.log", mode="w")
file_handler.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
return
def test_langfuse_logging_async():
# this tests time added to make langfuse logging calls, vs just acompletion calls
try:
pre_langfuse_setup()
litellm.set_verbose = True
# Make 5 calls with an empty success_callback
litellm.success_callback = []
start_time_empty_callback = asyncio.run(make_async_calls())
print("done with no callback test")
print("starting langfuse test")
# Make 5 calls with success_callback set to "langfuse"
litellm.success_callback = ["langfuse"]
start_time_langfuse = asyncio.run(make_async_calls())
print("done with langfuse test")
# Compare the time for both scenarios
print(f"Time taken with success_callback='langfuse': {start_time_langfuse}")
print(f"Time taken with empty success_callback: {start_time_empty_callback}")
# assert the diff is not more than 1 second - this was 5 seconds before the fix
assert abs(start_time_langfuse - start_time_empty_callback) < 1
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
async def make_async_calls(metadata=None, **completion_kwargs):
tasks = []
for _ in range(5):
tasks.append(create_async_task())
# Measure the start time before running the tasks
start_time = asyncio.get_event_loop().time()
# Wait for all tasks to complete
responses = await asyncio.gather(*tasks)
# Print the responses when tasks return
for idx, response in enumerate(responses):
print(f"Response from Task {idx + 1}: {response}")
# Calculate the total time taken
total_time = asyncio.get_event_loop().time() - start_time
return total_time
def create_async_task(**completion_kwargs):
"""
Creates an async task for the litellm.acompletion function.
This is just the task, but it is not run here.
To run the task it must be awaited or used in other asyncio coroutine execution functions like asyncio.gather.
Any kwargs passed to this function will be passed to the litellm.acompletion function.
By default a standard set of arguments are used for the litellm.acompletion function.
"""
completion_args = {
"model": "azure/chatgpt-v-3",
"api_version": "2024-02-01",
"messages": [{"role": "user", "content": "This is a test"}],
"max_tokens": 5,
"temperature": 0.7,
"timeout": 5,
"user": "langfuse_latency_test_user",
"mock_response": "It's simple to use and easy to get started",
}
completion_args.update(completion_kwargs)
return asyncio.create_task(litellm.acompletion(**completion_args))
@pytest.mark.asyncio
@pytest.mark.parametrize("stream", [False, True])
@pytest.mark.flaky(retries=12, delay=2)
async def test_langfuse_logging_without_request_response(stream, langfuse_client):
try:
import uuid
_unique_trace_name = f"litellm-test-{str(uuid.uuid4())}"
litellm.set_verbose = True
litellm.turn_off_message_logging = True
litellm.success_callback = ["langfuse"]
response = await create_async_task(
model="gpt-3.5-turbo",
stream=stream,
metadata={"trace_id": _unique_trace_name},
)
print(response)
if stream:
async for chunk in response:
print(chunk)
langfuse_client.flush()
await asyncio.sleep(5)
# get trace with _unique_trace_name
trace = langfuse_client.get_generations(trace_id=_unique_trace_name)
print("trace_from_langfuse", trace)
_trace_data = trace.data
if (
len(_trace_data) == 0
): # prevent infrequent list index out of range error from langfuse api
return
print(f"_trace_data: {_trace_data}")
assert _trace_data[0].input == {
"messages": [{"content": "redacted-by-litellm", "role": "user"}]
}
assert _trace_data[0].output == {
"role": "assistant",
"content": "redacted-by-litellm",
"function_call": None,
"tool_calls": None,
}
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# Get the current directory of the file being run
pwd = os.path.dirname(os.path.realpath(__file__))
print(pwd)
file_path = os.path.join(pwd, "gettysburg.wav")
audio_file = open(file_path, "rb")
@pytest.mark.asyncio
@pytest.mark.flaky(retries=4, delay=2)
@pytest.mark.skip(
reason="langfuse now takes 5-10 mins to get this trace. Need to figure out how to test this"
)
async def test_langfuse_logging_audio_transcriptions(langfuse_client):
"""
Test that creates a trace with masked input and output
"""
import uuid
_unique_trace_name = f"litellm-test-{str(uuid.uuid4())}"
litellm.set_verbose = True
litellm.success_callback = ["langfuse"]
await litellm.atranscription(
model="whisper-1",
file=audio_file,
metadata={
"trace_id": _unique_trace_name,
},
)
langfuse_client.flush()
await asyncio.sleep(20)
# get trace with _unique_trace_name
print("lookiing up trace", _unique_trace_name)
trace = langfuse_client.get_trace(id=_unique_trace_name)
generations = list(
reversed(langfuse_client.get_generations(trace_id=_unique_trace_name).data)
)
print("generations for given trace=", generations)
assert len(generations) == 1
assert generations[0].name == "litellm-atranscription"
assert generations[0].output is not None
@pytest.mark.asyncio
@pytest.mark.skip(
reason="langfuse now takes 5-10 mins to get this trace. Need to figure out how to test this"
)
async def test_langfuse_masked_input_output(langfuse_client):
"""
Test that creates a trace with masked input and output
"""
import uuid
for mask_value in [True, False]:
_unique_trace_name = f"litellm-test-{str(uuid.uuid4())}"
litellm.set_verbose = True
litellm.success_callback = ["langfuse"]
response = await create_async_task(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "This is a test"}],
metadata={
"trace_id": _unique_trace_name,
"mask_input": mask_value,
"mask_output": mask_value,
},
mock_response="This is a test response",
)
print(response)
expected_input = "redacted-by-litellm" if mask_value else "This is a test"
expected_output = (
"redacted-by-litellm" if mask_value else "This is a test response"
)
langfuse_client.flush()
await asyncio.sleep(30)
# get trace with _unique_trace_name
trace = langfuse_client.get_trace(id=_unique_trace_name)
print("trace_from_langfuse", trace)
generations = list(
reversed(langfuse_client.get_generations(trace_id=_unique_trace_name).data)
)
assert expected_input in str(trace.input)
assert expected_output in str(trace.output)
if len(generations) > 0:
assert expected_input in str(generations[0].input)
assert expected_output in str(generations[0].output)
@pytest.mark.asyncio
@pytest.mark.flaky(retries=12, delay=2)
@pytest.mark.skip(reason="all e2e langfuse tests now run on test_langfuse_e2e_test.py")
async def test_aaalangfuse_logging_metadata(langfuse_client):
"""
Test that creates multiple traces, with a varying number of generations and sets various metadata fields
Confirms that no metadata that is standard within Langfuse is duplicated in the respective trace or generation metadata
For trace continuation certain metadata of the trace is overriden with metadata from the last generation based on the update_trace_keys field
Version is set for both the trace and the generation
Release is just set for the trace
Tags is just set for the trace
"""
import uuid
litellm.set_verbose = True
litellm.success_callback = ["langfuse"]
trace_identifiers = {}
expected_filtered_metadata_keys = {
"trace_name",
"trace_id",
"existing_trace_id",
"trace_user_id",
"session_id",
"tags",
"generation_name",
"generation_id",
"prompt",
}
trace_metadata = {
"trace_actual_metadata_key": "trace_actual_metadata_value"
} # Allows for setting the metadata on the trace
run_id = str(uuid.uuid4())
session_id = f"litellm-test-session-{run_id}"
trace_common_metadata = {
"session_id": session_id,
"tags": ["litellm-test-tag1", "litellm-test-tag2"],
"update_trace_keys": [
"output",
"trace_metadata",
], # Overwrite the following fields in the trace with the last generation's output and the trace_user_id
"trace_metadata": trace_metadata,
"gen_metadata_key": "gen_metadata_value", # Metadata key that should not be filtered in the generation
"trace_release": "litellm-test-release",
"version": "litellm-test-version",
}
for trace_num in range(1, 3): # Two traces
metadata = copy.deepcopy(trace_common_metadata)
trace_id = f"litellm-test-trace{trace_num}-{run_id}"
metadata["trace_id"] = trace_id
metadata["trace_name"] = trace_id
trace_identifiers[trace_id] = []
print(f"Trace: {trace_id}")
for generation_num in range(
1, trace_num + 1
): # Each trace has a number of generations equal to its trace number
metadata["trace_user_id"] = f"litellm-test-user{generation_num}-{run_id}"
generation_id = (
f"litellm-test-trace{trace_num}-generation-{generation_num}-{run_id}"
)
metadata["generation_id"] = generation_id
metadata["generation_name"] = generation_id
metadata["trace_metadata"][
"generation_id"
] = generation_id # Update to test if trace_metadata is overwritten by update trace keys
trace_identifiers[trace_id].append(generation_id)
print(f"Generation: {generation_id}")
response = await create_async_task(
model="gpt-3.5-turbo",
mock_response=f"{session_id}:{trace_id}:{generation_id}",
messages=[
{
"role": "user",
"content": f"{session_id}:{trace_id}:{generation_id}",
}
],
max_tokens=100,
temperature=0.2,
metadata=copy.deepcopy(
metadata
), # Every generation needs its own metadata, langfuse is not async/thread safe without it
)
print(response)
metadata["existing_trace_id"] = trace_id
await asyncio.sleep(2)
langfuse_client.flush()
await asyncio.sleep(4)
# Tests the metadata filtering and the override of the output to be the last generation
for trace_id, generation_ids in trace_identifiers.items():
try:
trace = langfuse_client.get_trace(id=trace_id)
except Exception as e:
if "not found within authorized project" in str(e):
print(f"Trace {trace_id} not found")
continue
assert trace.id == trace_id
assert trace.session_id == session_id
assert trace.metadata != trace_metadata
generations = list(
reversed(langfuse_client.get_generations(trace_id=trace_id).data)
)
assert len(generations) == len(generation_ids)
assert (
trace.input == generations[0].input
) # Should be set by the first generation
assert (
trace.output == generations[-1].output
) # Should be overwritten by the last generation according to update_trace_keys
assert (
trace.metadata != generations[-1].metadata
) # Should be overwritten by the last generation according to update_trace_keys
assert trace.metadata["generation_id"] == generations[-1].id
assert set(trace.tags).issuperset(trace_common_metadata["tags"])
print("trace_from_langfuse", trace)
for generation_id, generation in zip(generation_ids, generations):
assert generation.id == generation_id
assert generation.trace_id == trace_id
print(
"common keys in trace",
set(generation.metadata.keys()).intersection(
expected_filtered_metadata_keys
),
)
assert set(generation.metadata.keys()).isdisjoint(
expected_filtered_metadata_keys
)
print("generation_from_langfuse", generation)
# test_langfuse_logging()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_stream():
try:
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "this is a streaming test for llama2 + langfuse",
}
],
max_tokens=20,
temperature=0.2,
stream=True,
)
print(response)
for chunk in response:
pass
# print(chunk)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
# test_langfuse_logging_stream()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_custom_generation_name():
try:
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm claude"}],
max_tokens=10,
metadata={
"langfuse/foo": "bar",
"langsmith/fizz": "buzz",
"prompt_hash": "asdf98u0j9131123",
"generation_name": "ishaan-test-generation",
"generation_id": "gen-id22",
"trace_id": "trace-id22",
"trace_user_id": "user-id2",
},
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
print(e)
# test_langfuse_logging_custom_generation_name()
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_embedding():
try:
litellm.set_verbose = True
litellm.success_callback = ["langfuse"]
response = litellm.embedding(
model="text-embedding-ada-002",
input=["gm", "ishaan"],
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
print(e)
@pytest.mark.skip(reason="beta test - checking langfuse output")
def test_langfuse_logging_function_calling():
litellm.set_verbose = True
function1 = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what's the weather in boston"}],
temperature=0.1,
functions=function1,
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
# test_langfuse_logging_function_calling()
@pytest.mark.skip(reason="Need to address this on main")
def test_aaalangfuse_existing_trace_id():
"""
When existing trace id is passed, don't set trace params -> prevents overwriting the trace
Pass 1 logging object with a trace
Pass 2nd logging object with the trace id
Assert no changes to the trace
"""
# Test - if the logs were sent to the correct team on langfuse
import datetime
import litellm
from litellm.integrations.langfuse.langfuse import LangFuseLogger
langfuse_Logger = LangFuseLogger(
langfuse_public_key=os.getenv("LANGFUSE_PROJECT2_PUBLIC"),
langfuse_secret=os.getenv("LANGFUSE_PROJECT2_SECRET"),
)
litellm.success_callback = ["langfuse"]
# langfuse_args = {'kwargs': { 'start_time': 'end_time': datetime.datetime(2024, 5, 1, 7, 31, 29, 903685), 'user_id': None, 'print_verbose': <function print_verbose at 0x109d1f420>, 'level': 'DEFAULT', 'status_message': None}
response_obj = litellm.ModelResponse(
id="chatcmpl-9K5HUAbVRqFrMZKXL0WoC295xhguY",
choices=[
litellm.Choices(
finish_reason="stop",
index=0,
message=litellm.Message(
content="I'm sorry, I am an AI assistant and do not have real-time information. I recommend checking a reliable weather website or app for the most up-to-date weather information in Boston.",
role="assistant",
),
)
],
created=1714573888,
model="gpt-3.5-turbo-0125",
object="chat.completion",
system_fingerprint="fp_3b956da36b",
usage=litellm.Usage(completion_tokens=37, prompt_tokens=14, total_tokens=51),
)
### NEW TRACE ###
message = [{"role": "user", "content": "what's the weather in boston"}]
langfuse_args = {
"response_obj": response_obj,
"kwargs": {
"model": "gpt-3.5-turbo",
"litellm_params": {
"acompletion": False,
"api_key": None,
"force_timeout": 600,
"logger_fn": None,
"verbose": False,
"custom_llm_provider": "openai",
"api_base": "https://api.openai.com/v1/",
"litellm_call_id": None,
"model_alias_map": {},
"completion_call_id": None,
"metadata": None,
"model_info": None,
"proxy_server_request": None,
"preset_cache_key": None,
"no-log": False,
"stream_response": {},
},
"messages": message,
"optional_params": {"temperature": 0.1, "extra_body": {}},
"start_time": "2024-05-01 07:31:27.986164",
"stream": False,
"user": None,
"call_type": "completion",
"litellm_call_id": None,
"completion_start_time": "2024-05-01 07:31:29.903685",
"temperature": 0.1,
"extra_body": {},
"input": [{"role": "user", "content": "what's the weather in boston"}],
"api_key": "my-api-key",
"additional_args": {
"complete_input_dict": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "what's the weather in boston"}
],
"temperature": 0.1,
"extra_body": {},
}
},
"log_event_type": "successful_api_call",
"end_time": "2024-05-01 07:31:29.903685",
"cache_hit": None,
"response_cost": 6.25e-05,
},
"start_time": datetime.datetime(2024, 5, 1, 7, 31, 27, 986164),
"end_time": datetime.datetime(2024, 5, 1, 7, 31, 29, 903685),
"user_id": None,
"print_verbose": litellm.print_verbose,
"level": "DEFAULT",
"status_message": None,
}
langfuse_response_object = langfuse_Logger.log_event(**langfuse_args)
import langfuse
langfuse_client = langfuse.Langfuse(
public_key=os.getenv("LANGFUSE_PROJECT2_PUBLIC"),
secret_key=os.getenv("LANGFUSE_PROJECT2_SECRET"),
)
trace_id = langfuse_response_object["trace_id"]
assert trace_id is not None
langfuse_client.flush()
time.sleep(2)
print(langfuse_client.get_trace(id=trace_id))
initial_langfuse_trace = langfuse_client.get_trace(id=trace_id)
### EXISTING TRACE ###
new_metadata = {"existing_trace_id": trace_id}
new_messages = [{"role": "user", "content": "What do you know?"}]
new_response_obj = litellm.ModelResponse(
id="chatcmpl-9K5HUAbVRqFrMZKXL0WoC295xhguY",
choices=[
litellm.Choices(
finish_reason="stop",
index=0,
message=litellm.Message(
content="What do I know?",
role="assistant",
),
)
],
created=1714573888,
model="gpt-3.5-turbo-0125",
object="chat.completion",
system_fingerprint="fp_3b956da36b",
usage=litellm.Usage(completion_tokens=37, prompt_tokens=14, total_tokens=51),
)
langfuse_args = {
"response_obj": new_response_obj,
"kwargs": {
"model": "gpt-3.5-turbo",
"litellm_params": {
"acompletion": False,
"api_key": None,
"force_timeout": 600,
"logger_fn": None,
"verbose": False,
"custom_llm_provider": "openai",
"api_base": "https://api.openai.com/v1/",
"litellm_call_id": "508113a1-c6f1-48ce-a3e1-01c6cce9330e",
"model_alias_map": {},
"completion_call_id": None,
"metadata": new_metadata,
"model_info": None,
"proxy_server_request": None,
"preset_cache_key": None,
"no-log": False,
"stream_response": {},
},
"messages": new_messages,
"optional_params": {"temperature": 0.1, "extra_body": {}},
"start_time": "2024-05-01 07:31:27.986164",
"stream": False,
"user": None,
"call_type": "completion",
"litellm_call_id": "508113a1-c6f1-48ce-a3e1-01c6cce9330e",
"completion_start_time": "2024-05-01 07:31:29.903685",
"temperature": 0.1,
"extra_body": {},
"input": [{"role": "user", "content": "what's the weather in boston"}],
"api_key": "my-api-key",
"additional_args": {
"complete_input_dict": {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "what's the weather in boston"}
],
"temperature": 0.1,
"extra_body": {},
}
},
"log_event_type": "successful_api_call",
"end_time": "2024-05-01 07:31:29.903685",
"cache_hit": None,
"response_cost": 6.25e-05,
},
"start_time": datetime.datetime(2024, 5, 1, 7, 31, 27, 986164),
"end_time": datetime.datetime(2024, 5, 1, 7, 31, 29, 903685),
"user_id": None,
"print_verbose": litellm.print_verbose,
"level": "DEFAULT",
"status_message": None,
}
langfuse_response_object = langfuse_Logger.log_event(**langfuse_args)
new_trace_id = langfuse_response_object["trace_id"]
assert new_trace_id == trace_id
langfuse_client.flush()
time.sleep(2)
print(langfuse_client.get_trace(id=trace_id))
new_langfuse_trace = langfuse_client.get_trace(id=trace_id)
initial_langfuse_trace_dict = dict(initial_langfuse_trace)
initial_langfuse_trace_dict.pop("updatedAt")
initial_langfuse_trace_dict.pop("timestamp")
new_langfuse_trace_dict = dict(new_langfuse_trace)
new_langfuse_trace_dict.pop("updatedAt")
new_langfuse_trace_dict.pop("timestamp")
assert initial_langfuse_trace_dict == new_langfuse_trace_dict
@pytest.mark.skipif(
condition=not os.environ.get("OPENAI_API_KEY", False),
reason="Authentication missing for openai",
)
def test_langfuse_logging_tool_calling():
litellm.set_verbose = True
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps(
{"location": "Tokyo", "temperature": "10", "unit": "celsius"}
)
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
)
elif "paris" in location.lower():
return json.dumps(
{"location": "Paris", "temperature": "22", "unit": "celsius"}
)
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
# test_langfuse_logging_tool_calling()
def get_langfuse_prompt(name: str):
import langfuse
from langfuse import Langfuse
try:
langfuse = Langfuse(
public_key=os.environ["LANGFUSE_DEV_PUBLIC_KEY"],
secret_key=os.environ["LANGFUSE_DEV_SK_KEY"],
host=os.environ["LANGFUSE_HOST"],
)
# Get current production version of a text prompt
prompt = langfuse.get_prompt(name=name)
return prompt
except Exception as e:
raise Exception(f"Error getting prompt: {e}")
@pytest.mark.asyncio
@pytest.mark.skip(
reason="local only test, use this to verify if we can send request to litellm proxy server"
)
async def test_make_request():
response = await litellm.acompletion(
model="openai/llama3",
api_key="sk-1234",
base_url="http://localhost:4000",
messages=[{"role": "user", "content": "Hi 👋 - i'm claude"}],
extra_body={
"metadata": {
"tags": ["openai"],
"prompt": get_langfuse_prompt("test-chat"),
}
},
)
@pytest.mark.skip(
reason="local only test, use this to verify if dynamic langfuse logging works as expected"
)
def test_aaalangfuse_dynamic_logging():
"""
pass in langfuse credentials via completion call
assert call is logged.
Covers the team-logging scenario.
"""
import uuid
import langfuse
trace_id = str(uuid.uuid4())
_ = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey"}],
mock_response="Hey! how's it going?",
langfuse_public_key=os.getenv("LANGFUSE_PROJECT2_PUBLIC"),
langfuse_secret_key=os.getenv("LANGFUSE_PROJECT2_SECRET"),
metadata={"trace_id": trace_id},
success_callback=["langfuse"],
)
time.sleep(3)
langfuse_client = langfuse.Langfuse(
public_key=os.getenv("LANGFUSE_PROJECT2_PUBLIC"),
secret_key=os.getenv("LANGFUSE_PROJECT2_SECRET"),
)
langfuse_client.get_trace(id=trace_id)
import datetime
generation_params = {
"name": "litellm-acompletion",
"id": "time-10-35-32-316778_chatcmpl-ABQDEzVJS8fziPdvkeTA3tnQaxeMX",
"start_time": datetime.datetime(2024, 9, 25, 10, 35, 32, 316778),
"end_time": datetime.datetime(2024, 9, 25, 10, 35, 32, 897141),
"model": "gpt-4o",
"model_parameters": {
"stream": False,
"max_retries": 0,
"extra_body": "{}",
"system_fingerprint": "fp_52a7f40b0b",
},
"input": {
"messages": [
{"content": "<>", "role": "system"},
{"content": "<>", "role": "user"},
]
},
"output": {
"content": "Hello! It looks like your message might have been sent by accident. How can I assist you today?",
"role": "assistant",
"tool_calls": None,
"function_call": None,
},
"usage": {"prompt_tokens": 13, "completion_tokens": 21, "total_cost": 0.00038},
"metadata": {
"prompt": {
"name": "conversational-service-answer_question_restricted_reply",
"version": 9,
"config": {},
"labels": ["latest", "staging", "production"],
"tags": ["conversational-service"],
"prompt": [
{"role": "system", "content": "<>"},
{"role": "user", "content": "{{text}}"},
],
},
"requester_metadata": {
"session_id": "e953a71f-e129-4cf5-ad11-ad18245022f1",
"trace_name": "jess",
"tags": ["conversational-service", "generative-ai-engine", "staging"],
"prompt": {
"name": "conversational-service-answer_question_restricted_reply",
"version": 9,
"config": {},
"labels": ["latest", "staging", "production"],
"tags": ["conversational-service"],
"prompt": [
{"role": "system", "content": "<>"},
{"role": "user", "content": "{{text}}"},
],
},
},
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"litellm_api_version": "0.0.0",
"user_api_key_user_id": "default_user_id",
"user_api_key_spend": 0.0,
"user_api_key_metadata": {},
"requester_ip_address": "127.0.0.1",
"model_group": "gpt-4o",
"model_group_size": 0,
"deployment": "gpt-4o",
"model_info": {
"id": "5583ac0c3e38cfd381b6cc09bcca6e0db60af48d3f16da325f82eb9df1b6a1e4",
"db_model": False,
},
"hidden_params": {
"headers": {
"date": "Wed, 25 Sep 2024 17:35:32 GMT",
"content-type": "application/json",
"transfer-encoding": "chunked",
"connection": "keep-alive",
"access-control-expose-headers": "X-Request-ID",
"openai-organization": "reliablekeystest",
"openai-processing-ms": "329",
"openai-version": "2020-10-01",
"strict-transport-security": "max-age=31536000; includeSubDomains; preload",
"x-ratelimit-limit-requests": "10000",
"x-ratelimit-limit-tokens": "30000000",
"x-ratelimit-remaining-requests": "9999",
"x-ratelimit-remaining-tokens": "29999980",
"x-ratelimit-reset-requests": "6ms",
"x-ratelimit-reset-tokens": "0s",
"x-request-id": "req_fdff3bfa11c391545d2042d46473214f",
"cf-cache-status": "DYNAMIC",
"set-cookie": "__cf_bm=NWwOByRU5dQwDqLRYbbTT.ecfqvnWiBi8aF9rfp1QB8-1727285732-1.0.1.1-.Cm0UGMaQ4qZbY3ZU0F7trjSsNUcIBo04PetRMlCoyoTCTnKTbmwmDCWcHmqHOTuE_bNspSgfQoANswx4BSD.A; path=/; expires=Wed, 25-Sep-24 18:05:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None, _cfuvid=1b_nyqBtAs4KHRhFBV2a.8zic1fSRJxT.Jn1npl1_GY-1727285732915-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None",
"x-content-type-options": "nosniff",
"server": "cloudflare",
"cf-ray": "8c8cc573becb232c-SJC",
"content-encoding": "gzip",
"alt-svc": 'h3=":443"; ma=86400',
},
"additional_headers": {
"llm_provider-date": "Wed, 25 Sep 2024 17:35:32 GMT",
"llm_provider-content-type": "application/json",
"llm_provider-transfer-encoding": "chunked",
"llm_provider-connection": "keep-alive",
"llm_provider-access-control-expose-headers": "X-Request-ID",
"llm_provider-openai-organization": "reliablekeystest",
"llm_provider-openai-processing-ms": "329",
"llm_provider-openai-version": "2020-10-01",
"llm_provider-strict-transport-security": "max-age=31536000; includeSubDomains; preload",
"llm_provider-x-ratelimit-limit-requests": "10000",
"llm_provider-x-ratelimit-limit-tokens": "30000000",
"llm_provider-x-ratelimit-remaining-requests": "9999",
"llm_provider-x-ratelimit-remaining-tokens": "29999980",
"llm_provider-x-ratelimit-reset-requests": "6ms",
"llm_provider-x-ratelimit-reset-tokens": "0s",
"llm_provider-x-request-id": "req_fdff3bfa11c391545d2042d46473214f",
"llm_provider-cf-cache-status": "DYNAMIC",
"llm_provider-set-cookie": "__cf_bm=NWwOByRU5dQwDqLRYbbTT.ecfqvnWiBi8aF9rfp1QB8-1727285732-1.0.1.1-.Cm0UGMaQ4qZbY3ZU0F7trjSsNUcIBo04PetRMlCoyoTCTnKTbmwmDCWcHmqHOTuE_bNspSgfQoANswx4BSD.A; path=/; expires=Wed, 25-Sep-24 18:05:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None, _cfuvid=1b_nyqBtAs4KHRhFBV2a.8zic1fSRJxT.Jn1npl1_GY-1727285732915-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None",
"llm_provider-x-content-type-options": "nosniff",
"llm_provider-server": "cloudflare",
"llm_provider-cf-ray": "8c8cc573becb232c-SJC",
"llm_provider-content-encoding": "gzip",
"llm_provider-alt-svc": 'h3=":443"; ma=86400',
},
"litellm_call_id": "1fa31658-20af-40b5-9ac9-60fd7b5ad98c",
"model_id": "5583ac0c3e38cfd381b6cc09bcca6e0db60af48d3f16da325f82eb9df1b6a1e4",
"api_base": "https://api.openai.com",
"optional_params": {
"stream": False,
"max_retries": 0,
"extra_body": {},
},
"response_cost": 0.00038,
},
"litellm_response_cost": 0.00038,
"api_base": "https://api.openai.com/v1/",
"cache_hit": False,
},
"level": "DEFAULT",
"version": None,
}
@pytest.mark.parametrize(
"prompt",
[
[
{"role": "system", "content": "<>"},
{"role": "user", "content": "{{text}}"},
],
"hello world",
],
)
def test_langfuse_prompt_type(prompt):
from litellm.integrations.langfuse.langfuse import _add_prompt_to_generation_params
from unittest.mock import patch, MagicMock, Mock
clean_metadata = {
"prompt": {
"name": "conversational-service-answer_question_restricted_reply",
"version": 9,
"config": {},
"labels": ["latest", "staging", "production"],
"tags": ["conversational-service"],
"prompt": prompt,
},
"requester_metadata": {
"session_id": "e953a71f-e129-4cf5-ad11-ad18245022f1",
"trace_name": "jess",
"tags": ["conversational-service", "generative-ai-engine", "staging"],
"prompt": {
"name": "conversational-service-answer_question_restricted_reply",
"version": 9,
"config": {},
"labels": ["latest", "staging", "production"],
"tags": ["conversational-service"],
"prompt": [
{"role": "system", "content": "<>"},
{"role": "user", "content": "{{text}}"},
],
},
},
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"litellm_api_version": "0.0.0",
"user_api_key_user_id": "default_user_id",
"user_api_key_spend": 0.0,
"user_api_key_metadata": {},
"requester_ip_address": "127.0.0.1",
"model_group": "gpt-4o",
"model_group_size": 0,
"deployment": "gpt-4o",
"model_info": {
"id": "5583ac0c3e38cfd381b6cc09bcca6e0db60af48d3f16da325f82eb9df1b6a1e4",
"db_model": False,
},
"hidden_params": {
"headers": {
"date": "Wed, 25 Sep 2024 17:35:32 GMT",
"content-type": "application/json",
"transfer-encoding": "chunked",
"connection": "keep-alive",
"access-control-expose-headers": "X-Request-ID",
"openai-organization": "reliablekeystest",
"openai-processing-ms": "329",
"openai-version": "2020-10-01",
"strict-transport-security": "max-age=31536000; includeSubDomains; preload",
"x-ratelimit-limit-requests": "10000",
"x-ratelimit-limit-tokens": "30000000",
"x-ratelimit-remaining-requests": "9999",
"x-ratelimit-remaining-tokens": "29999980",
"x-ratelimit-reset-requests": "6ms",
"x-ratelimit-reset-tokens": "0s",
"x-request-id": "req_fdff3bfa11c391545d2042d46473214f",
"cf-cache-status": "DYNAMIC",
"set-cookie": "__cf_bm=NWwOByRU5dQwDqLRYbbTT.ecfqvnWiBi8aF9rfp1QB8-1727285732-1.0.1.1-.Cm0UGMaQ4qZbY3ZU0F7trjSsNUcIBo04PetRMlCoyoTCTnKTbmwmDCWcHmqHOTuE_bNspSgfQoANswx4BSD.A; path=/; expires=Wed, 25-Sep-24 18:05:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None, _cfuvid=1b_nyqBtAs4KHRhFBV2a.8zic1fSRJxT.Jn1npl1_GY-1727285732915-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None",
"x-content-type-options": "nosniff",
"server": "cloudflare",
"cf-ray": "8c8cc573becb232c-SJC",
"content-encoding": "gzip",
"alt-svc": 'h3=":443"; ma=86400',
},
"additional_headers": {
"llm_provider-date": "Wed, 25 Sep 2024 17:35:32 GMT",
"llm_provider-content-type": "application/json",
"llm_provider-transfer-encoding": "chunked",
"llm_provider-connection": "keep-alive",
"llm_provider-access-control-expose-headers": "X-Request-ID",
"llm_provider-openai-organization": "reliablekeystest",
"llm_provider-openai-processing-ms": "329",
"llm_provider-openai-version": "2020-10-01",
"llm_provider-strict-transport-security": "max-age=31536000; includeSubDomains; preload",
"llm_provider-x-ratelimit-limit-requests": "10000",
"llm_provider-x-ratelimit-limit-tokens": "30000000",
"llm_provider-x-ratelimit-remaining-requests": "9999",
"llm_provider-x-ratelimit-remaining-tokens": "29999980",
"llm_provider-x-ratelimit-reset-requests": "6ms",
"llm_provider-x-ratelimit-reset-tokens": "0s",
"llm_provider-x-request-id": "req_fdff3bfa11c391545d2042d46473214f",
"llm_provider-cf-cache-status": "DYNAMIC",
"llm_provider-set-cookie": "__cf_bm=NWwOByRU5dQwDqLRYbbTT.ecfqvnWiBi8aF9rfp1QB8-1727285732-1.0.1.1-.Cm0UGMaQ4qZbY3ZU0F7trjSsNUcIBo04PetRMlCoyoTCTnKTbmwmDCWcHmqHOTuE_bNspSgfQoANswx4BSD.A; path=/; expires=Wed, 25-Sep-24 18:05:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None, _cfuvid=1b_nyqBtAs4KHRhFBV2a.8zic1fSRJxT.Jn1npl1_GY-1727285732915-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None",
"llm_provider-x-content-type-options": "nosniff",
"llm_provider-server": "cloudflare",
"llm_provider-cf-ray": "8c8cc573becb232c-SJC",
"llm_provider-content-encoding": "gzip",
"llm_provider-alt-svc": 'h3=":443"; ma=86400',
},
"litellm_call_id": "1fa31658-20af-40b5-9ac9-60fd7b5ad98c",
"model_id": "5583ac0c3e38cfd381b6cc09bcca6e0db60af48d3f16da325f82eb9df1b6a1e4",
"api_base": "https://api.openai.com",
"optional_params": {"stream": False, "max_retries": 0, "extra_body": {}},
"response_cost": 0.00038,
},
"litellm_response_cost": 0.00038,
"api_base": "https://api.openai.com/v1/",
"cache_hit": False,
}
_add_prompt_to_generation_params(
generation_params=generation_params,
clean_metadata=clean_metadata,
prompt_management_metadata=None,
langfuse_client=Mock(),
)
def test_langfuse_logging_metadata():
from litellm.integrations.langfuse.langfuse import log_requester_metadata
metadata = {"key": "value", "requester_metadata": {"key": "value"}}
got_metadata = log_requester_metadata(clean_metadata=metadata)
expected_metadata = {"requester_metadata": {"key": "value"}}
assert expected_metadata == got_metadata
|