File size: 10,531 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# What is this?
## Unit Tests for OpenAI Assistants API
import json
import os
import sys
import traceback

from dotenv import load_dotenv

load_dotenv()
sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path
import asyncio
import logging

import pytest
from openai.types.beta.assistant import Assistant
from typing_extensions import override

import litellm
from litellm import create_thread, get_thread
from litellm.llms.openai.openai import (
    AssistantEventHandler,
    AsyncAssistantEventHandler,
    AsyncCursorPage,
    MessageData,
    OpenAIAssistantsAPI,
)
from litellm.llms.openai.openai import OpenAIMessage as Message
from litellm.llms.openai.openai import SyncCursorPage, Thread

"""
V0 Scope:

- Add Message -> `/v1/threads/{thread_id}/messages`
- Run Thread -> `/v1/threads/{thread_id}/run`
"""

def _add_azure_related_dynamic_params(data: dict) -> dict:
    data["api_version"] = "2024-02-15-preview"
    data["api_base"] = os.getenv("AZURE_ASSISTANTS_API_BASE")
    data["api_key"] = os.getenv("AZURE_ASSISTANTS_API_KEY")
    return data


@pytest.mark.parametrize("provider", ["openai", "azure"])
@pytest.mark.parametrize(
    "sync_mode",
    [True, False],
)
@pytest.mark.asyncio
async def test_get_assistants(provider, sync_mode):
    data = {
        "custom_llm_provider": provider,
    }
    if provider == "azure":
        data = _add_azure_related_dynamic_params(data)

    if sync_mode == True:
        assistants = litellm.get_assistants(**data)
        assert isinstance(assistants, SyncCursorPage)
    else:
        assistants = await litellm.aget_assistants(**data)
        assert isinstance(assistants, AsyncCursorPage)


@pytest.mark.parametrize("provider", ["azure", "openai"])
@pytest.mark.parametrize(
    "sync_mode",
    [True, False],
)
@pytest.mark.asyncio()
@pytest.mark.flaky(retries=3, delay=1)
async def test_create_delete_assistants(provider, sync_mode):
    litellm.ssl_verify = False
    litellm._turn_on_debug()
    data = {
        "custom_llm_provider": provider,
        "model": "gpt-4.5-preview",
        "instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
        "name": "Math Tutor",
        "tools": [{"type": "code_interpreter"}],
    }
    if provider == "azure":
        data = _add_azure_related_dynamic_params(data)

    if sync_mode == True:
        assistant = litellm.create_assistants(**data)

        print("New assistants", assistant)
        assert isinstance(assistant, Assistant)
        assert (
            assistant.instructions
            == "You are a personal math tutor. When asked a question, write and run Python code to answer the question."
        )
        assert assistant.id is not None

        # delete the created assistant
        delete_data = {
            "custom_llm_provider": provider,
            "assistant_id": assistant.id,
        }
        if provider == "azure":
            delete_data = _add_azure_related_dynamic_params(delete_data)
        response = litellm.delete_assistant(**delete_data)
        print("Response deleting assistant", response)
        assert response.id == assistant.id
    else:
        assistant = await litellm.acreate_assistants(**data)
        print("New assistants", assistant)
        assert isinstance(assistant, Assistant)
        assert (
            assistant.instructions
            == "You are a personal math tutor. When asked a question, write and run Python code to answer the question."
        )
        assert assistant.id is not None

        # delete the created assistant
        delete_data = {
            "custom_llm_provider": provider,
            "assistant_id": assistant.id,
        }
        if provider == "azure":
            delete_data = _add_azure_related_dynamic_params(delete_data)
        response = await litellm.adelete_assistant(**delete_data)
        print("Response deleting assistant", response)
        assert response.id == assistant.id


@pytest.mark.parametrize("provider", ["openai", "azure"])
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_create_thread_litellm(sync_mode, provider) -> Thread:
    message: MessageData = {"role": "user", "content": "Hey, how's it going?"}  # type: ignore
    data = {
        "custom_llm_provider": provider,
        "message": [message],
    }
    if provider == "azure":
        data = _add_azure_related_dynamic_params(data)

    if sync_mode:
        new_thread = create_thread(**data)
    else:
        new_thread = await litellm.acreate_thread(**data)

    assert isinstance(
        new_thread, Thread
    ), f"type of thread={type(new_thread)}. Expected Thread-type"

    return new_thread


@pytest.mark.parametrize("provider", ["openai", "azure"])
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_get_thread_litellm(provider, sync_mode):
    new_thread = test_create_thread_litellm(sync_mode, provider)

    if asyncio.iscoroutine(new_thread):
        _new_thread = await new_thread
    else:
        _new_thread = new_thread

    data = {
        "custom_llm_provider": provider,
        "thread_id": _new_thread.id,
    }
    if provider == "azure":
        data = _add_azure_related_dynamic_params(data)

    if sync_mode:
        received_thread = get_thread(**data)
    else:
        received_thread = await litellm.aget_thread(**data)

    assert isinstance(
        received_thread, Thread
    ), f"type of thread={type(received_thread)}. Expected Thread-type"
    return new_thread


@pytest.mark.parametrize("provider", ["openai", "azure"])
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_add_message_litellm(sync_mode, provider):
    message: MessageData = {"role": "user", "content": "Hey, how's it going?"}  # type: ignore
    new_thread = test_create_thread_litellm(sync_mode, provider)

    if asyncio.iscoroutine(new_thread):
        _new_thread = await new_thread
    else:
        _new_thread = new_thread
    # add message to thread
    message: MessageData = {"role": "user", "content": "Hey, how's it going?"}  # type: ignore

    data = {"custom_llm_provider": provider, "thread_id": _new_thread.id, **message}
    if provider == "azure":
        data = _add_azure_related_dynamic_params(data)
    if sync_mode:
        added_message = litellm.add_message(**data)
    else:
        added_message = await litellm.a_add_message(**data)

    print(f"added message: {added_message}")

    assert isinstance(added_message, Message)


@pytest.mark.parametrize(
    "provider",
    [
        "azure",
        "openai",
    ],
)  #
@pytest.mark.parametrize(
    "sync_mode",
    [
        True,
        False,
    ],
)
@pytest.mark.parametrize(
    "is_streaming",
    [True, False],
)  #
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_aarun_thread_litellm(sync_mode, provider, is_streaming):
    """
    - Get Assistants
    - Create thread
    - Create run w/ Assistants + Thread
    """
    import openai



    try:
        get_assistants_data = {
            "custom_llm_provider": provider,
        }
        if provider == "azure":
            get_assistants_data = _add_azure_related_dynamic_params(get_assistants_data)
        if sync_mode:
            assistants = litellm.get_assistants(**get_assistants_data)
        else:
            assistants = await litellm.aget_assistants(**get_assistants_data)

        ## get the first assistant ###
        try:
            assistant_id = assistants.data[0].id
        except IndexError:
            pytest.skip("No assistants found")

        new_thread = test_create_thread_litellm(sync_mode=sync_mode, provider=provider)

        if asyncio.iscoroutine(new_thread):
            _new_thread = await new_thread
        else:
            _new_thread = new_thread

        thread_id = _new_thread.id

        # add message to thread
        message: MessageData = {"role": "user", "content": "Hey, how's it going?"}  # type: ignore

        data = {"custom_llm_provider": provider, "thread_id": _new_thread.id, **message}
        if provider == "azure":
            data = _add_azure_related_dynamic_params(data)

        if sync_mode:
            added_message = litellm.add_message(**data)

            if is_streaming:
                run = litellm.run_thread_stream(assistant_id=assistant_id, **data)
                with run as run:
                    assert isinstance(run, AssistantEventHandler)
                    print(run)
                    run.until_done()
            else:
                run = litellm.run_thread(
                    assistant_id=assistant_id, stream=is_streaming, **data
                )
                if run.status == "completed":
                    messages = litellm.get_messages(
                        thread_id=_new_thread.id, custom_llm_provider=provider
                    )
                    assert isinstance(messages.data[0], Message)
                else:
                    pytest.fail(
                        "An unexpected error occurred when running the thread, {}".format(
                            run
                        )
                    )

        else:
            added_message = await litellm.a_add_message(**data)

            if is_streaming:
                run = litellm.arun_thread_stream(assistant_id=assistant_id, **data)
                async with run as run:
                    print(f"run: {run}")
                    assert isinstance(
                        run,
                        AsyncAssistantEventHandler,
                    )
                    print(run)
                    await run.until_done()
            else:
                run = await litellm.arun_thread(
                    custom_llm_provider=provider,
                    thread_id=thread_id,
                    assistant_id=assistant_id,
                )

                if run.status == "completed":
                    messages = await litellm.aget_messages(
                        thread_id=_new_thread.id, custom_llm_provider=provider
                    )
                    assert isinstance(messages.data[0], Message)
                else:
                    pytest.fail(
                        "An unexpected error occurred when running the thread, {}".format(
                            run
                        )
                    )
    except openai.APIError as e:
        pass