Spaces:
Configuration error
Configuration error
File size: 20,280 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.datadog import *
from datetime import datetime, timedelta
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingModelInformation,
StandardLoggingMetadata,
StandardLoggingHiddenParams,
)
verbose_logger.setLevel(logging.DEBUG)
def create_standard_logging_payload() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!"}],
response={"choices": [{"message": {"content": "Hi there!"}}]},
error_str=None,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)
@pytest.mark.asyncio
async def test_create_datadog_logging_payload():
"""Test creating a DataDog logging payload from a standard logging object"""
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
# Create mock kwargs with the standard logging object
kwargs = {"standard_logging_object": standard_payload}
# Test payload creation
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
# Verify payload structure
assert dd_payload["ddsource"] == os.getenv("DD_SOURCE", "litellm")
assert dd_payload["service"] == "litellm-server"
assert dd_payload["status"] == DataDogStatus.INFO
# verify the message field == standard_payload
dict_payload = json.loads(dd_payload["message"])
assert dict_payload == standard_payload
@pytest.mark.asyncio
async def test_datadog_failure_logging():
"""Test logging a failure event to DataDog"""
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
standard_payload["status"] = "failure" # Set status to failure
standard_payload["error_str"] = "Test error"
kwargs = {"standard_logging_object": standard_payload}
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
assert (
dd_payload["status"] == DataDogStatus.ERROR
) # Verify failure maps to warning status
# verify the message field == standard_payload
dict_payload = json.loads(dd_payload["message"])
assert dict_payload == standard_payload
# verify error_str is in the message field
assert "error_str" in dict_payload
assert dict_payload["error_str"] == "Test error"
@pytest.mark.asyncio
async def test_datadog_logging_http_request():
"""
- Test that the HTTP request is made to Datadog
- sent to the /api/v2/logs endpoint
- the payload is batched
- each element in the payload is a DatadogPayload
- each element in a DatadogPayload.message contains all the valid fields
"""
try:
from litellm.integrations.datadog.datadog import DataDogLogger
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(5):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# Print the request body
# You can add more specific assertions here if needed
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
assert len(body) == 5 # 5 logs should be sent to DataDog
# Assert that the first element in body has the expected fields and shape
assert isinstance(body[0], dict), "First element in body should be a dictionary"
# Get the expected fields and their types from DatadogPayload
expected_fields = DatadogPayload.__annotations__
# Assert that all elements in body have the fields of DatadogPayload with correct types
for log in body:
assert isinstance(log, dict), "Each log should be a dictionary"
for field, expected_type in expected_fields.items():
assert field in log, f"Field '{field}' is missing from the log"
assert isinstance(
log[field], expected_type
), f"Field '{field}' has incorrect type. Expected {expected_type}, got {type(log[field])}"
# Additional assertion to ensure no extra fields are present
for log in body:
assert set(log.keys()) == set(
expected_fields.keys()
), f"Log contains unexpected fields: {set(log.keys()) - set(expected_fields.keys())}"
# Parse the 'message' field as JSON and check its structure
message = json.loads(body[0]["message"])
print("logged message", json.dumps(message, indent=4))
expected_message_fields = StandardLoggingPayload.__annotations__.keys()
for field in expected_message_fields:
assert field in message, f"Field '{field}' is missing from the message"
# Check specific fields
assert message["call_type"] == "acompletion"
assert message["model"] == "gpt-3.5-turbo"
assert isinstance(message["model_parameters"], dict)
assert "temperature" in message["model_parameters"]
assert "max_tokens" in message["model_parameters"]
assert isinstance(message["response"], dict)
assert isinstance(message["metadata"], dict)
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_log_redis_failures():
"""
Test that poorly configured Redis is logged as Warning on DataDog
"""
try:
from litellm.caching.caching import Cache
from litellm.integrations.datadog.datadog import DataDogLogger
litellm.cache = Cache(
type="redis", host="badhost", port="6379", password="badpassword"
)
os.environ["DD_SITE"] = "https://fake.datadoghq.com"
os.environ["DD_API_KEY"] = "anything"
dd_logger = DataDogLogger()
litellm.callbacks = [dd_logger]
litellm.service_callback = ["datadog"]
litellm.set_verbose = True
# Create a mock for the async_client's post method
mock_post = AsyncMock()
mock_post.return_value.status_code = 202
mock_post.return_value.text = "Accepted"
dd_logger.async_client.post = mock_post
# Make the completion call
for _ in range(3):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
mock_response="Accepted",
)
print(response)
# Wait for 5 seconds
await asyncio.sleep(6)
# Assert that the mock was called
assert mock_post.called, "HTTP request was not made"
# Get the arguments of the last call
args, kwargs = mock_post.call_args
print("CAll args and kwargs", args, kwargs)
# For example, checking if the URL is correct
assert kwargs["url"].endswith("/api/v2/logs"), "Incorrect DataDog endpoint"
body = kwargs["data"]
# use gzip to unzip the body
with gzip.open(io.BytesIO(body), "rb") as f:
body = f.read().decode("utf-8")
print(body)
# body is string parse it to dict
body = json.loads(body)
print(body)
failure_events = [log for log in body if log["status"] == "warning"]
assert len(failure_events) > 0, "No failure events logged"
print("ALL FAILURE/WARN EVENTS", failure_events)
for event in failure_events:
message = json.loads(event["message"])
assert (
event["status"] == "warning"
), f"Event status is not 'warning': {event['status']}"
assert (
message["service"] == "redis"
), f"Service is not 'redis': {message['service']}"
assert "error" in message, "No 'error' field in the message"
assert message["error"], "Error field is empty"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
@pytest.mark.skip(reason="local-only test, to test if everything works fine.")
async def test_datadog_logging():
try:
litellm.success_callback = ["datadog"]
litellm.set_verbose = True
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
)
print(response)
await asyncio.sleep(5)
except Exception as e:
print(e)
@pytest.mark.asyncio
async def test_datadog_payload_environment_variables():
"""Test that DataDog payload correctly includes environment variables in the payload structure"""
try:
# Set test environment variables
test_env = {
"DD_ENV": "test-env",
"DD_SERVICE": "test-service",
"DD_VERSION": "1.0.0",
"DD_SOURCE": "test-source",
"DD_API_KEY": "fake-key",
"DD_SITE": "datadoghq.com",
}
with patch.dict(os.environ, test_env):
dd_logger = DataDogLogger()
standard_payload = create_standard_logging_payload()
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
print("dd payload=", json.dumps(dd_payload, indent=2))
# Verify payload structure and environment variables
assert (
dd_payload["ddsource"] == "test-source"
), "Incorrect source in payload"
assert (
dd_payload["service"] == "test-service"
), "Incorrect service in payload"
assert (
"env:test-env,service:test-service,version:1.0.0,HOSTNAME:"
in dd_payload["ddtags"]
), "Incorrect tags in payload"
except Exception as e:
pytest.fail(f"Test failed with exception: {str(e)}")
@pytest.mark.asyncio
async def test_datadog_payload_content_truncation():
"""
Test that DataDog payload correctly truncates long content
DataDog has a limit of 1MB for the logged payload size.
"""
dd_logger = DataDogLogger()
# Create a standard payload with very long content
standard_payload = create_standard_logging_payload()
long_content = "x" * 80_000 # Create string longer than MAX_STR_LENGTH (10_000)
# Modify payload with long content
standard_payload["error_str"] = long_content
standard_payload["messages"] = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": long_content,
"detail": "low",
},
}
],
}
]
standard_payload["response"] = {"choices": [{"message": {"content": long_content}}]}
# Create the payload
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs={"standard_logging_object": standard_payload},
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
print("dd_payload", json.dumps(dd_payload, indent=2))
# Parse the message back to dict to verify truncation
message_dict = json.loads(dd_payload["message"])
# Verify truncation of fields
assert len(message_dict["error_str"]) < 10_100, "error_str not truncated correctly"
assert (
len(str(message_dict["messages"])) < 10_100
), "messages not truncated correctly"
assert (
len(str(message_dict["response"])) < 10_100
), "response not truncated correctly"
def test_datadog_static_methods():
"""Test the static helper methods in DataDogLogger class"""
# Test with default environment variables
assert DataDogLogger._get_datadog_source() == "litellm"
assert DataDogLogger._get_datadog_service() == "litellm-server"
assert DataDogLogger._get_datadog_hostname() is not None
assert DataDogLogger._get_datadog_env() == "unknown"
assert DataDogLogger._get_datadog_pod_name() == "unknown"
# Test tags format with default values
assert (
"env:unknown,service:litellm,version:unknown,HOSTNAME:"
in DataDogLogger._get_datadog_tags()
)
# Test with custom environment variables
test_env = {
"DD_SOURCE": "custom-source",
"DD_SERVICE": "custom-service",
"HOSTNAME": "test-host",
"DD_ENV": "production",
"DD_VERSION": "1.0.0",
"POD_NAME": "pod-123",
}
with patch.dict(os.environ, test_env):
assert DataDogLogger._get_datadog_source() == "custom-source"
print(
"DataDogLogger._get_datadog_source()", DataDogLogger._get_datadog_source()
)
assert DataDogLogger._get_datadog_service() == "custom-service"
print(
"DataDogLogger._get_datadog_service()", DataDogLogger._get_datadog_service()
)
assert DataDogLogger._get_datadog_hostname() == "test-host"
print(
"DataDogLogger._get_datadog_hostname()",
DataDogLogger._get_datadog_hostname(),
)
assert DataDogLogger._get_datadog_env() == "production"
print("DataDogLogger._get_datadog_env()", DataDogLogger._get_datadog_env())
assert DataDogLogger._get_datadog_pod_name() == "pod-123"
print(
"DataDogLogger._get_datadog_pod_name()",
DataDogLogger._get_datadog_pod_name(),
)
# Test tags format with custom values
expected_custom_tags = "env:production,service:custom-service,version:1.0.0,HOSTNAME:test-host,POD_NAME:pod-123"
print("DataDogLogger._get_datadog_tags()", DataDogLogger._get_datadog_tags())
assert DataDogLogger._get_datadog_tags() == expected_custom_tags
@pytest.mark.asyncio
async def test_datadog_non_serializable_messages():
"""Test logging events with non-JSON-serializable messages"""
dd_logger = DataDogLogger()
# Create payload with non-serializable content
standard_payload = create_standard_logging_payload()
non_serializable_obj = datetime.now() # datetime objects aren't JSON serializable
standard_payload["messages"] = [{"role": "user", "content": non_serializable_obj}]
standard_payload["response"] = {
"choices": [{"message": {"content": non_serializable_obj}}]
}
kwargs = {"standard_logging_object": standard_payload}
# Test payload creation
dd_payload = dd_logger.create_datadog_logging_payload(
kwargs=kwargs,
response_obj=None,
start_time=datetime.now(),
end_time=datetime.now(),
)
# Verify payload can be serialized
assert dd_payload["status"] == DataDogStatus.INFO
# Verify the message can be parsed back to dict
dict_payload = json.loads(dd_payload["message"])
# Check that the non-serializable objects were converted to strings
assert isinstance(dict_payload["messages"][0]["content"], str)
assert isinstance(dict_payload["response"]["choices"][0]["message"]["content"], str)
def test_get_datadog_tags():
"""Test the _get_datadog_tags static method with various inputs"""
# Test with no standard_logging_object and default env vars
base_tags = DataDogLogger._get_datadog_tags()
assert "env:" in base_tags
assert "service:" in base_tags
assert "version:" in base_tags
assert "POD_NAME:" in base_tags
assert "HOSTNAME:" in base_tags
# Test with custom env vars
test_env = {
"DD_ENV": "production",
"DD_SERVICE": "custom-service",
"DD_VERSION": "1.0.0",
"HOSTNAME": "test-host",
"POD_NAME": "pod-123",
}
with patch.dict(os.environ, test_env):
custom_tags = DataDogLogger._get_datadog_tags()
assert "env:production" in custom_tags
assert "service:custom-service" in custom_tags
assert "version:1.0.0" in custom_tags
assert "HOSTNAME:test-host" in custom_tags
assert "POD_NAME:pod-123" in custom_tags
# Test with standard_logging_object containing request_tags
standard_logging_obj = create_standard_logging_payload()
standard_logging_obj["request_tags"] = ["tag1", "tag2"]
tags_with_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
assert "request_tag:tag1" in tags_with_request
assert "request_tag:tag2" in tags_with_request
# Test with empty request_tags
standard_logging_obj["request_tags"] = []
tags_empty_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
assert "request_tag:" not in tags_empty_request
# Test with None request_tags
standard_logging_obj["request_tags"] = None
tags_none_request = DataDogLogger._get_datadog_tags(standard_logging_obj)
assert "request_tag:" not in tags_none_request
|