File size: 4,164 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Test the DataDogLLMObsLogger
"""

import io
import os
import sys


sys.path.insert(0, os.path.abspath("../.."))

import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch

import pytest

import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.datadog_llm_obs import DataDogLLMObsLogger
from datetime import datetime, timedelta
from litellm.types.integrations.datadog_llm_obs import *
from litellm.types.utils import (
    StandardLoggingPayload,
    StandardLoggingModelInformation,
    StandardLoggingMetadata,
    StandardLoggingHiddenParams,
)

verbose_logger.setLevel(logging.DEBUG)


def create_standard_logging_payload() -> StandardLoggingPayload:
    return StandardLoggingPayload(
        id="test_id",
        call_type="completion",
        response_cost=0.1,
        response_cost_failure_debug_info=None,
        status="success",
        total_tokens=30,
        prompt_tokens=20,
        completion_tokens=10,
        startTime=1234567890.0,
        endTime=1234567891.0,
        completionStartTime=1234567890.5,
        model_map_information=StandardLoggingModelInformation(
            model_map_key="gpt-3.5-turbo", model_map_value=None
        ),
        model="gpt-3.5-turbo",
        model_id="model-123",
        model_group="openai-gpt",
        api_base="https://api.openai.com",
        metadata=StandardLoggingMetadata(
            user_api_key_hash="test_hash",
            user_api_key_org_id=None,
            user_api_key_alias="test_alias",
            user_api_key_team_id="test_team",
            user_api_key_user_id="test_user",
            user_api_key_team_alias="test_team_alias",
            spend_logs_metadata=None,
            requester_ip_address="127.0.0.1",
            requester_metadata=None,
        ),
        cache_hit=False,
        cache_key=None,
        saved_cache_cost=0.0,
        request_tags=[],
        end_user=None,
        requester_ip_address="127.0.0.1",
        messages=[{"role": "user", "content": "Hello, world!"}],
        response={"choices": [{"message": {"content": "Hi there!"}}]},
        error_str=None,
        model_parameters={"stream": True},
        hidden_params=StandardLoggingHiddenParams(
            model_id="model-123",
            cache_key=None,
            api_base="https://api.openai.com",
            response_cost="0.1",
            additional_headers=None,
        ),
    )


@pytest.mark.asyncio
async def test_datadog_llm_obs_logging():
    datadog_llm_obs_logger = DataDogLLMObsLogger()
    litellm.callbacks = [datadog_llm_obs_logger]
    litellm.set_verbose = True

    for _ in range(2):
        response = await litellm.acompletion(
            model="gpt-4o",
            messages=[{"role": "user", "content": "Hello testing dd llm obs!"}],
            mock_response="hi",
        )

        print(response)

    await asyncio.sleep(6)


@pytest.mark.asyncio
async def test_create_llm_obs_payload():
    datadog_llm_obs_logger = DataDogLLMObsLogger()
    standard_logging_payload = create_standard_logging_payload()
    payload = datadog_llm_obs_logger.create_llm_obs_payload(
        kwargs={
            "model": "gpt-4",
            "messages": [{"role": "user", "content": "Hello"}],
            "standard_logging_object": standard_logging_payload,
        },
        response_obj=litellm.ModelResponse(
            id="test_id",
            choices=[{"message": {"content": "Hi there!"}}],
            created=12,
            model="gpt-4",
        ),
        start_time=datetime.now(),
        end_time=datetime.now() + timedelta(seconds=1),
    )

    print("dd created payload", payload)

    assert payload["name"] == "litellm_llm_call"
    assert payload["meta"]["kind"] == "llm"
    assert payload["meta"]["input"]["messages"] == [
        {"role": "user", "content": "Hello, world!"}
    ]
    assert payload["meta"]["output"]["messages"][0]["content"] == "Hi there!"
    assert payload["metrics"]["input_tokens"] == 20
    assert payload["metrics"]["output_tokens"] == 10
    assert payload["metrics"]["total_tokens"] == 30