File size: 12,835 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import io
import os
import sys


sys.path.insert(0, os.path.abspath("../.."))

import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch, MagicMock
import pytest
from datetime import datetime, timezone
from litellm.integrations.langsmith import (
    LangsmithLogger,
    LangsmithQueueObject,
    CredentialsKey,
    BatchGroup,
)

import litellm


# Test get_credentials_from_env
@pytest.mark.asyncio
async def test_get_credentials_from_env():
    # Test with direct parameters
    logger = LangsmithLogger(
        langsmith_api_key="test-key",
        langsmith_project="test-project",
        langsmith_base_url="http://test-url",
    )

    credentials = logger.get_credentials_from_env(
        langsmith_api_key="custom-key",
        langsmith_project="custom-project",
        langsmith_base_url="http://custom-url",
    )

    assert credentials["LANGSMITH_API_KEY"] == "custom-key"
    assert credentials["LANGSMITH_PROJECT"] == "custom-project"
    assert credentials["LANGSMITH_BASE_URL"] == "http://custom-url"

    # assert that the default api base is used if not provided
    credentials = logger.get_credentials_from_env()
    assert credentials["LANGSMITH_BASE_URL"] == "https://api.smith.langchain.com"


@pytest.mark.asyncio
async def test_group_batches_by_credentials():

    logger = LangsmithLogger(langsmith_api_key="test-key")

    # Create test queue objects
    queue_obj1 = LangsmithQueueObject(
        data={"test": "data1"},
        credentials={
            "LANGSMITH_API_KEY": "key1",
            "LANGSMITH_PROJECT": "proj1",
            "LANGSMITH_BASE_URL": "url1",
        },
    )

    queue_obj2 = LangsmithQueueObject(
        data={"test": "data2"},
        credentials={
            "LANGSMITH_API_KEY": "key1",
            "LANGSMITH_PROJECT": "proj1",
            "LANGSMITH_BASE_URL": "url1",
        },
    )

    logger.log_queue = [queue_obj1, queue_obj2]

    grouped = logger._group_batches_by_credentials()

    # Check grouping
    assert len(grouped) == 1  # Should have one group since credentials are same
    key = list(grouped.keys())[0]
    assert isinstance(key, CredentialsKey)
    assert len(grouped[key].queue_objects) == 2


@pytest.mark.asyncio
async def test_group_batches_by_credentials_multiple_credentials():

    # Test with multiple different credentials
    logger = LangsmithLogger(langsmith_api_key="test-key")

    queue_obj1 = LangsmithQueueObject(
        data={"test": "data1"},
        credentials={
            "LANGSMITH_API_KEY": "key1",
            "LANGSMITH_PROJECT": "proj1",
            "LANGSMITH_BASE_URL": "url1",
        },
    )

    queue_obj2 = LangsmithQueueObject(
        data={"test": "data2"},
        credentials={
            "LANGSMITH_API_KEY": "key2",  # Different API key
            "LANGSMITH_PROJECT": "proj1",
            "LANGSMITH_BASE_URL": "url1",
        },
    )

    queue_obj3 = LangsmithQueueObject(
        data={"test": "data3"},
        credentials={
            "LANGSMITH_API_KEY": "key1",
            "LANGSMITH_PROJECT": "proj2",  # Different project
            "LANGSMITH_BASE_URL": "url1",
        },
    )

    logger.log_queue = [queue_obj1, queue_obj2, queue_obj3]

    grouped = logger._group_batches_by_credentials()

    # Check grouping
    assert len(grouped) == 3  # Should have three groups since credentials differ
    for key, batch_group in grouped.items():
        assert isinstance(key, CredentialsKey)
        assert len(batch_group.queue_objects) == 1  # Each group should have one object


# Test make_dot_order
@pytest.mark.asyncio
async def test_make_dot_order():
    logger = LangsmithLogger(langsmith_api_key="test-key")
    run_id = "729cff0e-f30c-4336-8b79-45d6b61c64b4"
    dot_order = logger.make_dot_order(run_id)

    print("dot_order=", dot_order)

    # Check format: YYYYMMDDTHHMMSSfffZ + run_id
    # Check the timestamp portion (first 23 characters)
    timestamp_part = dot_order[:-36]  # 36 is length of run_id
    assert len(timestamp_part) == 22
    assert timestamp_part[8] == "T"  # Check T separator
    assert timestamp_part[-1] == "Z"  # Check Z suffix

    # Verify timestamp format
    try:
        # Parse the timestamp portion (removing the Z)
        datetime.strptime(timestamp_part[:-1], "%Y%m%dT%H%M%S%f")
    except ValueError:
        pytest.fail("Timestamp portion is not in correct format")

    # Verify run_id portion
    assert dot_order[-36:] == run_id


# Test is_serializable
@pytest.mark.asyncio
async def test_is_serializable():
    from litellm.integrations.langsmith import is_serializable
    from pydantic import BaseModel

    # Test basic types
    assert is_serializable("string") is True
    assert is_serializable(123) is True
    assert is_serializable({"key": "value"}) is True

    # Test non-serializable types
    async def async_func():
        pass

    assert is_serializable(async_func) is False

    class TestModel(BaseModel):
        field: str

    assert is_serializable(TestModel(field="test")) is False


@pytest.mark.asyncio
async def test_async_send_batch():
    logger = LangsmithLogger(langsmith_api_key="test-key")

    # Mock the httpx client
    mock_response = AsyncMock()
    mock_response.status_code = 200
    logger.async_httpx_client = AsyncMock()
    logger.async_httpx_client.post.return_value = mock_response

    # Add test data to queue
    logger.log_queue = [
        LangsmithQueueObject(
            data={"test": "data"}, credentials=logger.default_credentials
        )
    ]

    await logger.async_send_batch()

    # Verify the API call
    logger.async_httpx_client.post.assert_called_once()
    call_args = logger.async_httpx_client.post.call_args
    assert "runs/batch" in call_args[1]["url"]
    assert "x-api-key" in call_args[1]["headers"]


@pytest.mark.asyncio
async def test_langsmith_key_based_logging(mocker):
    """
    In key based logging langsmith_api_key and langsmith_project are passed directly to litellm.acompletion
    """
    try:
        # Mock the httpx post request
        mock_post = mocker.patch(
            "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post"
        )
        mock_post.return_value.status_code = 200
        mock_post.return_value.raise_for_status = lambda: None
        litellm.set_verbose = True
        litellm.DEFAULT_FLUSH_INTERVAL_SECONDS = 1

        litellm.callbacks = [LangsmithLogger()]
        response = await litellm.acompletion(
            model="gpt-3.5-turbo",
            messages=[{"role": "user", "content": "Test message"}],
            max_tokens=10,
            temperature=0.2,
            mock_response="This is a mock response",
            langsmith_api_key="fake_key_project2",
            langsmith_project="fake_project2",
        )
        print("Waiting for logs to be flushed to Langsmith.....")
        await asyncio.sleep(3)

        print("done sleeping 3 seconds...")

        # Verify the post request was made with correct parameters
        mock_post.assert_called_once()
        call_args = mock_post.call_args

        print("call_args", call_args)

        # Check URL contains /runs/batch
        assert "/runs/batch" in call_args[1]["url"]

        # Check headers contain the correct API key
        assert call_args[1]["headers"]["x-api-key"] == "fake_key_project2"

        # Verify the request body contains the expected data
        request_body = call_args[1]["json"]
        assert "post" in request_body
        assert len(request_body["post"]) == 1  # Should contain one run

        # EXPECTED BODY
        expected_body = {
            "post": [
                {
                    "name": "LLMRun",
                    "run_type": "llm",
                    "inputs": {
                        "id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
                        "call_type": "acompletion",
                        "model": "gpt-3.5-turbo",
                        "messages": [{"role": "user", "content": "Test message"}],
                        "model_parameters": {
                            "temperature": 0.2,
                            "max_tokens": 10,
                        },
                    },
                    "outputs": {
                        "id": "chatcmpl-82699ee4-7932-4fc0-9585-76abc8caeafa",
                        "model": "gpt-3.5-turbo",
                        "choices": [
                            {
                                "finish_reason": "stop",
                                "index": 0,
                                "message": {
                                    "content": "This is a mock response",
                                    "role": "assistant",
                                    "tool_calls": None,
                                    "function_call": None,
                                },
                            }
                        ],
                        "usage": {
                            "completion_tokens": 20,
                            "prompt_tokens": 10,
                            "total_tokens": 30,
                        },
                    },
                    "session_name": "fake_project2",
                }
            ]
        }

        # Print both bodies for debugging
        actual_body = call_args[1]["json"]
        print("\nExpected body:")
        print(json.dumps(expected_body, indent=2))
        print("\nActual body:")
        print(json.dumps(actual_body, indent=2))

        assert len(actual_body["post"]) == 1

        # Assert only the critical parts we care about
        assert actual_body["post"][0]["name"] == expected_body["post"][0]["name"]
        assert (
            actual_body["post"][0]["run_type"] == expected_body["post"][0]["run_type"]
        )
        assert (
            actual_body["post"][0]["inputs"]["messages"]
            == expected_body["post"][0]["inputs"]["messages"]
        )
        assert (
            actual_body["post"][0]["inputs"]["model_parameters"]
            == expected_body["post"][0]["inputs"]["model_parameters"]
        )
        assert (
            actual_body["post"][0]["outputs"]["choices"]
            == expected_body["post"][0]["outputs"]["choices"]
        )
        assert (
            actual_body["post"][0]["outputs"]["usage"]["completion_tokens"]
            == expected_body["post"][0]["outputs"]["usage"]["completion_tokens"]
        )
        assert (
            actual_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
            == expected_body["post"][0]["outputs"]["usage"]["prompt_tokens"]
        )
        assert (
            actual_body["post"][0]["outputs"]["usage"]["total_tokens"]
            == expected_body["post"][0]["outputs"]["usage"]["total_tokens"]
        )
        assert (
            actual_body["post"][0]["session_name"]
            == expected_body["post"][0]["session_name"]
        )

    except Exception as e:
        pytest.fail(f"Error occurred: {e}")


@pytest.mark.asyncio
async def test_langsmith_queue_logging():
    try:
        # Initialize LangsmithLogger
        test_langsmith_logger = LangsmithLogger()

        litellm.callbacks = [test_langsmith_logger]
        test_langsmith_logger.batch_size = 6
        litellm.set_verbose = True

        # Make multiple calls to ensure we don't hit the batch size
        for _ in range(5):
            response = await litellm.acompletion(
                model="gpt-3.5-turbo",
                messages=[{"role": "user", "content": "Test message"}],
                max_tokens=10,
                temperature=0.2,
                mock_response="This is a mock response",
            )

        await asyncio.sleep(3)

        # Check that logs are in the queue
        assert len(test_langsmith_logger.log_queue) == 5

        # Now make calls to exceed the batch size
        for _ in range(3):
            response = await litellm.acompletion(
                model="gpt-3.5-turbo",
                messages=[{"role": "user", "content": "Test message"}],
                max_tokens=10,
                temperature=0.2,
                mock_response="This is a mock response",
            )

        # Wait a short time for any asynchronous operations to complete
        await asyncio.sleep(1)

        print(
            "Length of langsmith log queue: {}".format(
                len(test_langsmith_logger.log_queue)
            )
        )
        # Check that the queue was flushed after exceeding batch size
        assert len(test_langsmith_logger.log_queue) < 5

        # Clean up
        for cb in litellm.callbacks:
            if isinstance(cb, LangsmithLogger):
                await cb.async_httpx_client.client.aclose()

    except Exception as e:
        pytest.fail(f"Error occurred: {e}")