File size: 16,757 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import sys
import traceback
import uuid

from dotenv import load_dotenv
from fastapi import Request
from fastapi.routing import APIRoute

load_dotenv()
import io
import os
import time

# this file is to test litellm/proxy

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path
import asyncio
import datetime
import json
import logging
from typing import Optional
import pytest

import litellm
from litellm.proxy.spend_tracking.spend_tracking_utils import get_logging_payload
from litellm.proxy._types import SpendLogsMetadata, SpendLogsPayload


@pytest.mark.parametrize(
    "model_id",
    ["chatcmpl-9XZmkzS1uPhRCoVdGQvBqqIbSgECt", "", None],
)
def test_spend_logs_payload(model_id: Optional[str]):
    """
    Ensure only expected values are logged in spend logs payload.
    """

    input_args: dict = {
        "kwargs": {
            "model": "chatgpt-v-3",
            "messages": [
                {"role": "system", "content": "you are a helpful assistant.\n"},
                {"role": "user", "content": "bom dia"},
            ],
            "custom_llm_provider": "azure",
            "optional_params": {
                "stream": False,
                "max_tokens": 10,
                "user": "116544810872468347480",
                "extra_body": {},
            },
            "litellm_params": {
                "acompletion": True,
                "api_key": "23c217a5b59f41b6b7a198017f4792f2",
                "force_timeout": 600,
                "logger_fn": None,
                "verbose": False,
                "custom_llm_provider": "azure",
                "api_base": "https://openai-gpt-4-test-v-1.openai.azure.com//openai/",
                "litellm_call_id": "b9929bf6-7b80-4c8c-b486-034e6ac0c8b7",
                "model_alias_map": {},
                "completion_call_id": None,
                "metadata": {
                    "tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"],
                    "user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
                    "user_api_key_alias": "custom-key-alias",
                    "user_api_end_user_max_budget": None,
                    "litellm_api_version": "0.0.0",
                    "global_max_parallel_requests": None,
                    "user_api_key_user_id": "116544810872468347480",
                    "user_api_key_org_id": "custom-org-id",
                    "user_api_key_team_id": "custom-team-id",
                    "user_api_key_team_alias": "custom-team-alias",
                    "user_api_key_metadata": {},
                    "requester_ip_address": "127.0.0.1",
                    "spend_logs_metadata": {"hello": "world"},
                    "headers": {
                        "content-type": "application/json",
                        "user-agent": "PostmanRuntime/7.32.3",
                        "accept": "*/*",
                        "postman-token": "92300061-eeaa-423b-a420-0b44896ecdc4",
                        "host": "localhost:4000",
                        "accept-encoding": "gzip, deflate, br",
                        "connection": "keep-alive",
                        "content-length": "163",
                    },
                    "endpoint": "http://localhost:4000/chat/completions",
                    "model_group": "gpt-3.5-turbo",
                    "deployment": "azure/chatgpt-v-3",
                    "model_info": {
                        "id": "4bad40a1eb6bebd1682800f16f44b9f06c52a6703444c99c7f9f32e9de3693b4",
                        "db_model": False,
                    },
                    "api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
                    "caching_groups": None,
                    "error_information": None,
                    "status": "success",
                    "proxy_server_request": "{}",
                    "raw_request": "\n\nPOST Request Sent from LiteLLM:\ncurl -X POST \\\nhttps://openai-gpt-4-test-v-1.openai.azure.com//openai/ \\\n-H 'Authorization: *****' \\\n-d '{'model': 'chatgpt-v-3', 'messages': [{'role': 'system', 'content': 'you are a helpful assistant.\\n'}, {'role': 'user', 'content': 'bom dia'}], 'stream': False, 'max_tokens': 10, 'user': '116544810872468347480', 'extra_body': {}}'\n",
                },
                "model_info": {
                    "id": "4bad40a1eb6bebd1682800f16f44b9f06c52a6703444c99c7f9f32e9de3693b4",
                    "db_model": False,
                },
                "proxy_server_request": {
                    "url": "http://localhost:4000/chat/completions",
                    "method": "POST",
                    "headers": {
                        "content-type": "application/json",
                        "user-agent": "PostmanRuntime/7.32.3",
                        "accept": "*/*",
                        "postman-token": "92300061-eeaa-423b-a420-0b44896ecdc4",
                        "host": "localhost:4000",
                        "accept-encoding": "gzip, deflate, br",
                        "connection": "keep-alive",
                        "content-length": "163",
                    },
                    "body": {
                        "messages": [
                            {
                                "role": "system",
                                "content": "you are a helpful assistant.\n",
                            },
                            {"role": "user", "content": "bom dia"},
                        ],
                        "model": "gpt-3.5-turbo",
                        "max_tokens": 10,
                    },
                },
                "preset_cache_key": None,
                "no-log": False,
                "stream_response": {},
                "input_cost_per_token": None,
                "input_cost_per_second": None,
                "output_cost_per_token": None,
                "output_cost_per_second": None,
            },
            "start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 307665),
            "stream": False,
            "user": "116544810872468347480",
            "call_type": "acompletion",
            "litellm_call_id": "b9929bf6-7b80-4c8c-b486-034e6ac0c8b7",
            "completion_start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
            "max_tokens": 10,
            "extra_body": {},
            "custom_llm_provider": "azure",
            "input": [
                {"role": "system", "content": "you are a helpful assistant.\n"},
                {"role": "user", "content": "bom dia"},
            ],
            "api_key": "1234",
            "original_response": "",
            "additional_args": {
                "headers": {"Authorization": "Bearer 1234"},
                "api_base": "openai-gpt-4-test-v-1.openai.azure.com",
                "acompletion": True,
                "complete_input_dict": {
                    "model": "chatgpt-v-3",
                    "messages": [
                        {"role": "system", "content": "you are a helpful assistant.\n"},
                        {"role": "user", "content": "bom dia"},
                    ],
                    "stream": False,
                    "max_tokens": 10,
                    "user": "116544810872468347480",
                    "extra_body": {},
                },
            },
            "log_event_type": "post_api_call",
            "end_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
            "cache_hit": None,
            "response_cost": 2.4999999999999998e-05,
            "standard_logging_object": {
                "request_tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"],
                "metadata": {
                    "user_api_key_end_user_id": "test-user",
                },
                "model_map_information": {
                    "tpm": 1000,
                    "rpm": 1000,
                },
            },
        },
        "response_obj": litellm.ModelResponse(
            id=model_id,
            choices=[
                litellm.Choices(
                    finish_reason="length",
                    index=0,
                    message=litellm.Message(
                        content="Bom dia! Como posso ajudar você", role="assistant"
                    ),
                )
            ],
            created=1717789410,
            model="gpt-35-turbo",
            object="chat.completion",
            system_fingerprint=None,
            usage=litellm.Usage(
                completion_tokens=10, prompt_tokens=20, total_tokens=30
            ),
        ),
        "start_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 308604),
        "end_time": datetime.datetime(2024, 6, 7, 12, 43, 30, 954146),
    }

    payload: SpendLogsPayload = get_logging_payload(**input_args)

    assert len(payload["request_id"]) > 0
    # Define the expected metadata keys
    expected_metadata_keys = SpendLogsMetadata.__annotations__.keys()

    # Validate only specified metadata keys are logged
    assert "metadata" in payload
    assert isinstance(payload["metadata"], str)
    payload["metadata"] = json.loads(payload["metadata"])
    assert set(payload["metadata"].keys()) == set(expected_metadata_keys)

    # This is crucial - used in PROD, it should pass, related issue: https://github.com/BerriAI/litellm/issues/4334
    assert (
        payload["request_tags"] == '["model-anthropic-claude-v2.1", "app-ishaan-prod"]'
    )
    assert payload["metadata"]["user_api_key_org_id"] == "custom-org-id"
    assert payload["metadata"]["user_api_key_team_id"] == "custom-team-id"
    assert payload["metadata"]["user_api_key_team_alias"] == "custom-team-alias"
    assert payload["metadata"]["user_api_key_alias"] == "custom-key-alias"

    assert payload["custom_llm_provider"] == "azure"


def test_spend_logs_payload_whisper():
    """
    Ensure we can write /transcription request/responses to spend logs
    """

    kwargs: dict = {
        "model": "whisper-1",
        "messages": [{"role": "user", "content": "audio_file"}],
        "optional_params": {},
        "litellm_params": {
            "api_base": "",
            "metadata": {
                "user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
                "user_api_key_alias": None,
                "user_api_key_end_user_id": "test-user",
                "user_api_end_user_max_budget": None,
                "litellm_api_version": "1.40.19",
                "global_max_parallel_requests": None,
                "user_api_key_user_id": "default_user_id",
                "user_api_key_org_id": None,
                "user_api_key_team_id": None,
                "user_api_key_team_alias": None,
                "user_api_key_team_max_budget": None,
                "user_api_key_team_spend": None,
                "user_api_key_spend": 0.0,
                "user_api_key_max_budget": None,
                "user_api_key_metadata": {},
                "headers": {
                    "host": "localhost:4000",
                    "user-agent": "curl/7.88.1",
                    "accept": "*/*",
                    "content-length": "775501",
                    "content-type": "multipart/form-data; boundary=------------------------21d518e191326d20",
                },
                "endpoint": "http://localhost:4000/v1/audio/transcriptions",
                "litellm_parent_otel_span": None,
                "model_group": "whisper-1",
                "deployment": "whisper-1",
                "model_info": {
                    "id": "d7761582311451c34d83d65bc8520ce5c1537ea9ef2bec13383cf77596d49eeb",
                    "db_model": False,
                },
                "caching_groups": None,
            },
        },
        "start_time": datetime.datetime(2024, 6, 26, 14, 20, 11, 313291),
        "stream": False,
        "user": "",
        "call_type": "atranscription",
        "litellm_call_id": "05921cf7-33f9-421c-aad9-33310c1e2702",
        "completion_start_time": datetime.datetime(2024, 6, 26, 14, 20, 13, 653149),
        "stream_options": None,
        "input": "tmp-requestc8640aee-7d85-49c3-b3ef-bdc9255d8e37.wav",
        "original_response": '{"text": "Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."}',
        "additional_args": {
            "complete_input_dict": {
                "model": "whisper-1",
                "file": "<_io.BufferedReader name='tmp-requestc8640aee-7d85-49c3-b3ef-bdc9255d8e37.wav'>",
                "language": None,
                "prompt": None,
                "response_format": None,
                "temperature": None,
            }
        },
        "log_event_type": "post_api_call",
        "end_time": datetime.datetime(2024, 6, 26, 14, 20, 13, 653149),
        "cache_hit": None,
        "response_cost": 0.00023398580000000003,
    }

    response = litellm.utils.TranscriptionResponse(
        text="Four score and seven years ago, our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure."
    )

    payload: SpendLogsPayload = get_logging_payload(
        kwargs=kwargs,
        response_obj=response,
        start_time=datetime.datetime.now(),
        end_time=datetime.datetime.now(),
    )

    print("payload: ", payload)

    assert payload["call_type"] == "atranscription"
    assert payload["spend"] == 0.00023398580000000003


def test_spend_logs_payload_with_prompts_enabled(monkeypatch):
    """
    Test that messages and responses are logged in spend logs when store_prompts_in_spend_logs is enabled
    """
    # Mock general_settings
    from litellm.proxy.proxy_server import general_settings

    general_settings["store_prompts_in_spend_logs"] = True

    input_args: dict = {
        "kwargs": {
            "model": "gpt-3.5-turbo",
            "messages": [{"role": "user", "content": "Hello!"}],
            "litellm_params": {
                "metadata": {
                    "user_api_key": "fake_key",
                }
            },
        },
        "response_obj": litellm.ModelResponse(
            id="chatcmpl-123",
            choices=[
                litellm.Choices(
                    finish_reason="stop",
                    index=0,
                    message=litellm.Message(content="Hi there!", role="assistant"),
                )
            ],
            model="gpt-3.5-turbo",
            usage=litellm.Usage(completion_tokens=2, prompt_tokens=1, total_tokens=3),
        ),
        "start_time": datetime.datetime.now(),
        "end_time": datetime.datetime.now(),
    }

    # Create a standard logging payload
    standard_logging_payload = {
        "messages": [{"role": "user", "content": "Hello!"}],
        "response": {"role": "assistant", "content": "Hi there!"},
        "metadata": {
            "user_api_key_end_user_id": "test-user",
        },
        "request_tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"],
        "model_map_information": {
            "tpm": 1000,
            "rpm": 1000,
        },
    }
    litellm_params = {
        "proxy_server_request": {
            "body": {
                "model": "gpt-4",
                "messages": [{"role": "user", "content": "Hello!"}],
            }
        }
    }
    input_args["kwargs"]["standard_logging_object"] = standard_logging_payload
    input_args["kwargs"]["litellm_params"] = litellm_params

    payload: SpendLogsPayload = get_logging_payload(**input_args)

    print("json payload: ", json.dumps(payload, indent=4, default=str))

    # Verify messages and response are included in payload
    assert payload["response"] == json.dumps(
        {"role": "assistant", "content": "Hi there!"}
    )
    proxy_server_request = json.loads(payload["proxy_server_request"] or "{}")
    assert proxy_server_request["model"] == "gpt-4"
    assert proxy_server_request["messages"] == [{"role": "user", "content": "Hello!"}]

    # Clean up - reset general_settings
    general_settings["store_prompts_in_spend_logs"] = False

    # Verify messages and response are not included when disabled
    payload_disabled: SpendLogsPayload = get_logging_payload(**input_args)
    assert payload_disabled["messages"] == "{}"
    assert payload_disabled["response"] == "{}"