File size: 6,783 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# What this tests ?
## Tests /batches endpoints
import pytest
import asyncio
import aiohttp, openai
from openai import OpenAI, AsyncOpenAI
from typing import Optional, List, Union
from test_openai_files_endpoints import upload_file, delete_file
import os
import sys
import time


BASE_URL = "http://localhost:4000"  # Replace with your actual base URL
API_KEY = "sk-1234"  # Replace with your actual API key

from openai import OpenAI

client = OpenAI(base_url=BASE_URL, api_key=API_KEY)


@pytest.mark.asyncio
async def test_batches_operations():
    _current_dir = os.path.dirname(os.path.abspath(__file__))
    input_file_path = os.path.join(_current_dir, "input.jsonl")
    file_obj = client.files.create(
        file=open(input_file_path, "rb"),
        purpose="batch",
    )

    batch = client.batches.create(
        input_file_id=file_obj.id,
        endpoint="/v1/chat/completions",
        completion_window="24h",
    )

    assert batch.id is not None

    # Test get batch
    _retrieved_batch = client.batches.retrieve(batch_id=batch.id)
    print("response from get batch", _retrieved_batch)

    assert _retrieved_batch.id == batch.id
    assert _retrieved_batch.input_file_id == file_obj.id

    # Test list batches
    _list_batches = client.batches.list()
    print("response from list batches", _list_batches)

    assert _list_batches is not None
    assert len(_list_batches.data) > 0

    # Clean up
    # Test cancel batch
    _canceled_batch = client.batches.cancel(batch_id=batch.id)
    print("response from cancel batch", _canceled_batch)

    assert _canceled_batch.status is not None
    assert (
        _canceled_batch.status == "cancelling" or _canceled_batch.status == "cancelled"
    )

    # finally delete the file
    _deleted_file = client.files.delete(file_id=file_obj.id)
    print("response from delete file", _deleted_file)

    assert _deleted_file.deleted is True


def create_batch_oai_sdk(filepath: str, custom_llm_provider: str) -> str:
    batch_input_file = client.files.create(
        file=open(filepath, "rb"),
        purpose="batch",
        extra_body={"custom_llm_provider": custom_llm_provider},
    )
    batch_input_file_id = batch_input_file.id

    print("waiting for file to be processed......")
    time.sleep(5)
    rq = client.batches.create(
        input_file_id=batch_input_file_id,
        endpoint="/v1/chat/completions",
        completion_window="24h",
        metadata={
            "description": filepath,
        },
        extra_body={"custom_llm_provider": custom_llm_provider},
    )

    print(f"Batch submitted. ID: {rq.id}")
    return rq.id


def await_batch_completion(batch_id: str, custom_llm_provider: str):
    max_tries = 3
    tries = 0

    while tries < max_tries:
        batch = client.batches.retrieve(
            batch_id, extra_body={"custom_llm_provider": custom_llm_provider}
        )
        if batch.status == "completed":
            print(f"Batch {batch_id} completed.")
            return batch.id

        tries += 1
        print(f"waiting for batch to complete... (attempt {tries}/{max_tries})")
        time.sleep(10)

    print(
        f"Reached maximum number of attempts ({max_tries}). Batch may still be processing."
    )


def write_content_to_file(
    batch_id: str, output_path: str, custom_llm_provider: str
) -> str:
    batch = client.batches.retrieve(
        batch_id=batch_id, extra_body={"custom_llm_provider": custom_llm_provider}
    )
    content = client.files.content(
        file_id=batch.output_file_id,
        extra_body={"custom_llm_provider": custom_llm_provider},
    )
    print("content from files.content", content.content)
    content.write_to_file(output_path)


import jsonlines


def read_jsonl(filepath: str):
    results = []
    with jsonlines.open(filepath) as f:
        for line in f:
            results.append(line)

    for item in results:
        print(item)
        custom_id = item["custom_id"]
        print(custom_id)


def get_any_completed_batch_id_azure():
    print("AZURE getting any completed batch id")
    list_of_batches = client.batches.list(extra_body={"custom_llm_provider": "azure"})
    print("list of batches", list_of_batches)
    for batch in list_of_batches:
        if batch.status == "completed":
            return batch.id
    return None


@pytest.mark.parametrize("custom_llm_provider", ["azure", "openai"])
def test_e2e_batches_files(custom_llm_provider):
    """
    [PROD Test] Ensures OpenAI Batches + files work with OpenAI SDK
    """
    input_path = (
        "input.jsonl" if custom_llm_provider == "openai" else "input_azure.jsonl"
    )
    output_path = "out.jsonl" if custom_llm_provider == "openai" else "out_azure.jsonl"

    _current_dir = os.path.dirname(os.path.abspath(__file__))
    input_file_path = os.path.join(_current_dir, input_path)
    output_file_path = os.path.join(_current_dir, output_path)
    print("running e2e batches files with custom_llm_provider=", custom_llm_provider)
    batch_id = create_batch_oai_sdk(
        filepath=input_file_path, custom_llm_provider=custom_llm_provider
    )

    if custom_llm_provider == "azure":
        # azure takes very long to complete a batch
        return
    else:
        response_batch_id = await_batch_completion(
            batch_id=batch_id, custom_llm_provider=custom_llm_provider
        )
        if response_batch_id is None:
            return

    write_content_to_file(
        batch_id=batch_id,
        output_path=output_file_path,
        custom_llm_provider=custom_llm_provider,
    )
    read_jsonl(output_file_path)


@pytest.mark.skip(reason="Local only test to verify if things work well")
def test_vertex_batches_endpoint():
    """
    Test VertexAI Batches Endpoint
    """
    import os

    oai_client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
    file_name = "local_testing/vertex_batch_completions.jsonl"
    _current_dir = os.path.dirname(os.path.abspath(__file__))
    file_path = os.path.join(_current_dir, file_name)
    file_obj = oai_client.files.create(
        file=open(file_path, "rb"),
        purpose="batch",
        extra_body={"custom_llm_provider": "vertex_ai"},
    )
    print("Response from creating file=", file_obj)

    batch_input_file_id = file_obj.id
    assert (
        batch_input_file_id is not None
    ), f"Failed to create file, expected a non null file_id but got {batch_input_file_id}"

    create_batch_response = oai_client.batches.create(
        completion_window="24h",
        endpoint="/v1/chat/completions",
        input_file_id=batch_input_file_id,
        extra_body={"custom_llm_provider": "vertex_ai"},
        metadata={"key1": "value1", "key2": "value2"},
    )
    print("response from create batch", create_batch_response)
    pass