Spaces:
Configuration error
Configuration error
File size: 23,093 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
"""
Unit tests for prometheus metrics
"""
import pytest
import aiohttp
import asyncio
import uuid
import os
import sys
from openai import AsyncOpenAI
from typing import Dict, Any
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
END_USER_ID = "my-test-user-34"
async def make_bad_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_good_chat_completion_request(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-openai-endpoint",
"messages": [{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
"tags": ["teamB"],
"user": END_USER_ID, # test if disable end user tracking for prometheus works
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return status, response_text
async def make_chat_completion_request_with_fallback(session, key):
url = "http://0.0.0.0:4000/chat/completions"
headers = {
"Authorization": f"Bearer {key}",
"Content-Type": "application/json",
}
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["fake-openai-endpoint"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
# make a request with a failed fallback
data = {
"model": "fake-azure-endpoint",
"messages": [{"role": "user", "content": "Hello"}],
"fallbacks": ["unknown-model"],
}
async with session.post(url, headers=headers, json=data) as response:
status = response.status
response_text = await response.text()
return
@pytest.mark.asyncio
async def test_proxy_failure_metrics():
"""
- Make 1 bad chat completion call to "fake-azure-endpoint"
- GET /metrics
- assert the failure metric for the requested model is incremented by 1
- Assert the Exception class and status code are correct
"""
async with aiohttp.ClientSession() as session:
# Make a bad chat completion call
status, response_text = await make_bad_chat_completion_request(
session, "sk-1234"
)
# Check if the request failed as expected
assert status == 429, f"Expected status 429, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if the failure metric is present and correct
expected_metric = 'litellm_proxy_failed_requests_metric_total{api_key_alias="None",end_user="None",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",route="/chat/completions",team="None",team_alias="None",user="default_user_id"} 1.0'
assert (
expected_metric in metrics
), "Expected failure metric not found in /metrics."
expected_llm_deployment_failure = 'litellm_deployment_failure_responses_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0'
assert expected_llm_deployment_failure
assert (
'litellm_proxy_total_requests_metric_total{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",route="/chat/completions",status_code="429",team="None",team_alias="None",user="default_user_id",user_email="None"} 1.0'
in metrics
)
assert (
'litellm_deployment_failure_responses_total{api_base="https://exampleopenaiendpoint-production.up.railway.app",api_key_alias="None",api_provider="openai",exception_class="Openai.RateLimitError",exception_status="429",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",litellm_model_name="429",model_id="7499d31f98cd518cf54486d5a00deda6894239ce16d13543398dc8abf870b15f",requested_model="fake-azure-endpoint",team="None",team_alias="None"}'
in metrics
)
@pytest.mark.asyncio
async def test_proxy_success_metrics():
"""
Make 1 good /chat/completions call to "openai/gpt-3.5-turbo"
GET /metrics
Assert the success metric is incremented by 1
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
status, response_text = await make_good_chat_completion_request(
session, "sk-1234"
)
# Check if the request succeeded as expected
assert status == 200, f"Expected status 200, but got {status}"
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
assert END_USER_ID not in metrics
# Check if the success metric is present and correct
assert (
'litellm_request_total_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}'
in metrics
)
assert (
'litellm_llm_api_latency_metric_bucket{api_key_alias="None",end_user="None",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",le="0.005",model="fake",requested_model="fake-openai-endpoint",team="None",team_alias="None",user="default_user_id"}'
in metrics
)
verify_latency_metrics(metrics)
def verify_latency_metrics(metrics: str):
"""
Assert that LATENCY_BUCKETS distribution is used for
- litellm_request_total_latency_metric_bucket
- litellm_llm_api_latency_metric_bucket
Very important to verify that the overhead latency metric is present
"""
from litellm.types.integrations.prometheus import LATENCY_BUCKETS
import re
import time
time.sleep(2)
metric_names = [
"litellm_request_total_latency_metric_bucket",
"litellm_llm_api_latency_metric_bucket",
"litellm_overhead_latency_metric_bucket",
]
for metric_name in metric_names:
# Extract all 'le' values for the current metric
pattern = rf'{metric_name}{{.*?le="(.*?)".*?}}'
le_values = re.findall(pattern, metrics)
# Convert to set for easier comparison
actual_buckets = set(le_values)
print("actual_buckets", actual_buckets)
expected_buckets = []
for bucket in LATENCY_BUCKETS:
expected_buckets.append(str(bucket))
# replace inf with +Inf
expected_buckets = [
bucket.replace("inf", "+Inf") for bucket in expected_buckets
]
print("expected_buckets", expected_buckets)
expected_buckets = set(expected_buckets)
# Verify all expected buckets are present
assert (
actual_buckets == expected_buckets
), f"Mismatch in {metric_name} buckets. Expected: {expected_buckets}, Got: {actual_buckets}"
@pytest.mark.asyncio
async def test_proxy_fallback_metrics():
"""
Make 1 request with a client side fallback - check metrics
"""
async with aiohttp.ClientSession() as session:
# Make a good chat completion call
await make_chat_completion_request_with_fallback(session, "sk-1234")
# Get metrics
async with session.get("http://0.0.0.0:4000/metrics") as response:
metrics = await response.text()
print("/metrics", metrics)
# Check if successful fallback metric is incremented
assert (
'litellm_deployment_successful_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="fake-openai-endpoint",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
# Check if failed fallback metric is incremented
assert (
'litellm_deployment_failed_fallbacks_total{api_key_alias="None",exception_class="Openai.RateLimitError",exception_status="429",fallback_model="unknown-model",hashed_api_key="88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",requested_model="fake-azure-endpoint",team="None",team_alias="None"} 1.0'
in metrics
)
async def create_test_team(
session: aiohttp.ClientSession, team_data: Dict[str, Any]
) -> str:
"""Create a new team and return the team_id"""
url = "http://0.0.0.0:4000/team/new"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=team_data) as response:
assert (
response.status == 200
), f"Failed to create team. Status: {response.status}"
team_info = await response.json()
return team_info["team_id"]
async def create_test_user(
session: aiohttp.ClientSession, user_data: Dict[str, Any]
) -> str:
"""Create a new user and return the user_id"""
url = "http://0.0.0.0:4000/user/new"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
async with session.post(url, headers=headers, json=user_data) as response:
assert (
response.status == 200
), f"Failed to create user. Status: {response.status}"
user_info = await response.json()
return user_info
async def get_prometheus_metrics(session: aiohttp.ClientSession) -> str:
"""Fetch current prometheus metrics"""
async with session.get("http://0.0.0.0:4000/metrics") as response:
assert response.status == 200
return await response.text()
def extract_budget_metrics(metrics_text: str, team_id: str) -> Dict[str, float]:
"""Extract budget-related metrics for a specific team"""
import re
metrics = {}
# Get remaining budget
remaining_pattern = f'litellm_remaining_team_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
remaining_match = re.search(remaining_pattern, metrics_text)
metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None
# Get total budget
total_pattern = f'litellm_team_max_budget_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
total_match = re.search(total_pattern, metrics_text)
metrics["total"] = float(total_match.group(1)) if total_match else None
# Get remaining hours
hours_pattern = f'litellm_team_budget_remaining_hours_metric{{team="{team_id}",team_alias="[^"]*"}} ([0-9.]+)'
hours_match = re.search(hours_pattern, metrics_text)
metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None
return metrics
async def create_test_key(session: aiohttp.ClientSession, team_id: str) -> str:
"""Generate a new key for the team and return it"""
url = "http://0.0.0.0:4000/key/generate"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
data = {
"team_id": team_id,
}
async with session.post(url, headers=headers, json=data) as response:
assert (
response.status == 200
), f"Failed to generate key. Status: {response.status}"
key_info = await response.json()
return key_info["key"]
async def get_team_info(session: aiohttp.ClientSession, team_id: str) -> Dict[str, Any]:
"""Fetch team info and return the response"""
url = f"http://0.0.0.0:4000/team/info?team_id={team_id}"
headers = {
"Authorization": "Bearer sk-1234",
}
async with session.get(url, headers=headers) as response:
assert (
response.status == 200
), f"Failed to get team info. Status: {response.status}"
return await response.json()
@pytest.mark.asyncio
async def test_team_budget_metrics():
"""
Test team budget tracking metrics:
1. Create a team with max_budget
2. Generate a key for the team
3. Make chat completion requests using OpenAI SDK with team's key
4. Verify budget decreases over time
5. Verify request costs are being tracked correctly
6. Verify prometheus metrics match /team/info spend data
"""
async with aiohttp.ClientSession() as session:
# Setup test team
team_data = {
"team_alias": "budget_test_team",
"max_budget": 10,
"budget_duration": "7d",
}
team_id = await create_test_team(session, team_data)
print("team_id", team_id)
# Generate key for the team
team_key = await create_test_key(session, team_id)
# Initialize OpenAI client with team's key
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=team_key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first", metrics_after_first)
first_budget = extract_budget_metrics(metrics_after_first, team_id)
print(f"Budget after 1 request: {first_budget}")
assert (
first_budget["remaining"] < 10.0
), "remaining budget should be less than 10.0 after first request"
assert first_budget["total"] == 10.0, "Total budget metric is incorrect"
print("first_budget['remaining_hours']", first_budget["remaining_hours"])
# Budget should have positive remaining hours, up to 7 days
assert 0 < first_budget["remaining_hours"] <= 168, "Budget should have positive remaining hours, up to 7 days"
# Get team info and verify spend matches prometheus metrics
team_info = await get_team_info(session, team_id)
print("team_info", team_info)
_team_info_data = team_info["team_info"]
# Calculate spend from prometheus (total - remaining)
team_info_spend = float(_team_info_data["spend"])
team_info_max_budget = float(_team_info_data["max_budget"])
team_info_remaining_budget = team_info_max_budget - team_info_spend
print("\n\n\n###### Final budget metrics ######\n\n\n")
print("team_info_remaining_budget", team_info_remaining_budget)
print("prometheus_remaining_budget", first_budget["remaining"])
print(
"diff between team_info_remaining_budget and prometheus_remaining_budget",
team_info_remaining_budget - first_budget["remaining"],
)
# Verify spends match within a small delta (floating point comparison)
assert (
abs(team_info_remaining_budget - first_budget["remaining"]) <= 0.00000
), f"Spend mismatch: Prometheus={team_info_remaining_budget}, Team Info={first_budget['remaining']}"
async def create_test_key_with_budget(
session: aiohttp.ClientSession, budget_data: Dict[str, Any]
) -> str:
"""Generate a new key with budget constraints and return it"""
url = "http://0.0.0.0:4000/key/generate"
headers = {
"Authorization": "Bearer sk-1234",
"Content-Type": "application/json",
}
print("budget_data", budget_data)
async with session.post(url, headers=headers, json=budget_data) as response:
assert (
response.status == 200
), f"Failed to generate key. Status: {response.status}"
key_info = await response.json()
return key_info["key"]
async def get_key_info(session: aiohttp.ClientSession, key: str) -> Dict[str, Any]:
"""Fetch key info and return the response"""
url = "http://0.0.0.0:4000/key/info"
headers = {
"Authorization": f"Bearer {key}",
}
async with session.get(url, headers=headers) as response:
assert (
response.status == 200
), f"Failed to get key info. Status: {response.status}"
return await response.json()
def extract_key_budget_metrics(metrics_text: str, key_id: str) -> Dict[str, float]:
"""Extract budget-related metrics for a specific key"""
import re
metrics = {}
# Get remaining budget
remaining_pattern = f'litellm_remaining_api_key_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
remaining_match = re.search(remaining_pattern, metrics_text)
metrics["remaining"] = float(remaining_match.group(1)) if remaining_match else None
# Get total budget
total_pattern = f'litellm_api_key_max_budget_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
total_match = re.search(total_pattern, metrics_text)
metrics["total"] = float(total_match.group(1)) if total_match else None
# Get remaining hours
hours_pattern = f'litellm_api_key_budget_remaining_hours_metric{{api_key_alias="[^"]*",hashed_api_key="{key_id}"}} ([0-9.]+)'
hours_match = re.search(hours_pattern, metrics_text)
metrics["remaining_hours"] = float(hours_match.group(1)) if hours_match else None
return metrics
@pytest.mark.asyncio
async def test_key_budget_metrics():
"""
Test key budget tracking metrics:
1. Create a key with max_budget
2. Make chat completion requests using OpenAI SDK with the key
3. Verify budget decreases over time
4. Verify request costs are being tracked correctly
5. Verify prometheus metrics match /key/info spend data
"""
async with aiohttp.ClientSession() as session:
# Setup test key with unique alias
unique_alias = f"budget_test_key_{uuid.uuid4()}"
key_data = {
"key_alias": unique_alias,
"max_budget": 10,
"budget_duration": "7d",
}
key = await create_test_key_with_budget(session, key_data)
# Extract key_id from the key info
key_info = await get_key_info(session, key)
print("key_info", key_info)
key_id = key_info["key"]
print("key_id", key_id)
# Initialize OpenAI client with the key
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first request", metrics_after_first)
first_budget = extract_key_budget_metrics(metrics_after_first, key_id)
print(f"Budget after 1 request: {first_budget}")
assert (
first_budget["remaining"] < 10.0
), "remaining budget should be less than 10.0 after first request"
assert first_budget["total"] == 10.0, "Total budget metric is incorrect"
print("first_budget['remaining_hours']", first_budget["remaining_hours"])
# The budget reset time is now midnight, not exactly 7 days (168 hours) from creation
# So we'll check if it's within a reasonable range (5-7 days)
assert 120 <= first_budget["remaining_hours"] <= 168, "Budget remaining hours should be within a reasonable range (5-7 days)"
# Get key info and verify spend matches prometheus metrics
key_info = await get_key_info(session, key)
print("key_info", key_info)
_key_info_data = key_info["info"]
# Calculate spend from prometheus (total - remaining)
key_info_spend = float(_key_info_data["spend"])
key_info_max_budget = float(_key_info_data["max_budget"])
key_info_remaining_budget = key_info_max_budget - key_info_spend
print("\n\n\n###### Final budget metrics ######\n\n\n")
print("key_info_remaining_budget", key_info_remaining_budget)
print("prometheus_remaining_budget", first_budget["remaining"])
print(
"diff between key_info_remaining_budget and prometheus_remaining_budget",
key_info_remaining_budget - first_budget["remaining"],
)
# Verify spends match within a small delta (floating point comparison)
assert (
abs(key_info_remaining_budget - first_budget["remaining"]) <= 0.00000
), f"Spend mismatch: Prometheus={key_info_remaining_budget}, Key Info={first_budget['remaining']}"
@pytest.mark.asyncio
async def test_user_email_metrics():
"""
Test user email tracking metrics:
1. Create a user with user_email
2. Make chat completion requests using OpenAI SDK with the user's email
3. Verify user email is being tracked correctly in `litellm_user_email_metric`
"""
async with aiohttp.ClientSession() as session:
# Create a user with user_email
user_email = f"test-{uuid.uuid4()}@example.com"
user_data = {
"user_email": user_email,
}
user_info = await create_test_user(session, user_data)
key = user_info["key"]
# Initialize OpenAI client with the user's email
client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key=key)
# Make initial request and check budget
await client.chat.completions.create(
model="fake-openai-endpoint",
messages=[{"role": "user", "content": f"Hello {uuid.uuid4()}"}],
)
await asyncio.sleep(11) # Wait for metrics to update
# Get metrics after request
metrics_after_first = await get_prometheus_metrics(session)
print("metrics_after_first request", metrics_after_first)
assert (
user_email in metrics_after_first
), "user_email should be tracked correctly"
|