Spaces:
Configuration error
Configuration error
File size: 6,780 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
const fs = require('fs');
const path = require('path');
const os = require('os');
const { writeFileSync } = require('fs');
// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');
let lastCallId;
// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
// Modify the URL to use HTTP instead of HTTPS
if (url.startsWith('https://127.0.0.1:4000')) {
url = url.replace('https://', 'http://');
}
console.log('Patched fetch sending request to:', url);
const response = await originalFetch(url, options);
// Store the call ID if it exists
lastCallId = response.headers.get('x-litellm-call-id');
return response;
};
function loadVertexAiCredentials() {
console.log("loading vertex ai credentials");
const filepath = path.dirname(__filename);
const vertexKeyPath = path.join(filepath, "vertex_key.json");
// Initialize default empty service account data
let serviceAccountKeyData = {};
// Try to read existing vertex_key.json
try {
const content = fs.readFileSync(vertexKeyPath, 'utf8');
if (content && content.trim()) {
serviceAccountKeyData = JSON.parse(content);
}
} catch (error) {
// File doesn't exist or is invalid, continue with empty object
}
// Update with environment variables
const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
serviceAccountKeyData.private_key_id = privateKeyId;
serviceAccountKeyData.private_key = privateKey;
// Create temporary file
const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
// Set environment variable
process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
}
// Run credential loading before tests
beforeAll(() => {
loadVertexAiCredentials();
});
describe('Vertex AI Tests', () => {
test('should successfully generate non-streaming content with tags', async () => {
const vertexAI = new VertexAI({
project: 'pathrise-convert-1606954137718',
location: 'us-central1',
apiEndpoint: "127.0.0.1:4000/vertex_ai"
});
const customHeaders = new Headers({
"x-litellm-api-key": "sk-1234",
"tags": "vertex-js-sdk,pass-through-endpoint"
});
const requestOptions = {
customHeaders: customHeaders
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.5-pro' },
requestOptions
);
const request = {
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
};
const result = await generativeModel.generateContent(request);
expect(result).toBeDefined();
// Use the captured callId
const callId = lastCallId;
console.log("Captured Call ID:", callId);
// Wait for spend to be logged
await new Promise(resolve => setTimeout(resolve, 15000));
// Check spend logs
const spendResponse = await fetch(
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
{
headers: {
'Authorization': 'Bearer sk-1234'
}
}
);
const spendData = await spendResponse.json();
console.log("spendData", spendData)
expect(spendData).toBeDefined();
expect(spendData[0].request_id).toBe(callId);
expect(spendData[0].call_type).toBe('pass_through_endpoint');
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
expect(spendData[0].metadata).toHaveProperty('user_api_key');
expect(spendData[0].model).toContain('gemini');
expect(spendData[0].spend).toBeGreaterThan(0);
expect(spendData[0].custom_llm_provider).toBe('vertex_ai');
}, 25000);
test('should successfully generate streaming content with tags', async () => {
const vertexAI = new VertexAI({
project: 'pathrise-convert-1606954137718',
location: 'us-central1',
apiEndpoint: "127.0.0.1:4000/vertex_ai"
});
const customHeaders = new Headers({
"x-litellm-api-key": "sk-1234",
"tags": "vertex-js-sdk,pass-through-endpoint"
});
const requestOptions = {
customHeaders: customHeaders
};
const generativeModel = vertexAI.getGenerativeModel(
{ model: 'gemini-1.5-pro' },
requestOptions
);
const request = {
contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
};
const streamingResult = await generativeModel.generateContentStream(request);
expect(streamingResult).toBeDefined();
// Add some assertions
expect(streamingResult).toBeDefined();
for await (const item of streamingResult.stream) {
console.log('stream chunk:', JSON.stringify(item));
expect(item).toBeDefined();
}
const aggregatedResponse = await streamingResult.response;
console.log('aggregated response:', JSON.stringify(aggregatedResponse));
expect(aggregatedResponse).toBeDefined();
// Use the captured callId
const callId = lastCallId;
console.log("Captured Call ID:", callId);
// Wait for spend to be logged
await new Promise(resolve => setTimeout(resolve, 15000));
// Check spend logs
const spendResponse = await fetch(
`http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
{
headers: {
'Authorization': 'Bearer sk-1234'
}
}
);
const spendData = await spendResponse.json();
console.log("spendData", spendData)
expect(spendData).toBeDefined();
expect(spendData[0].request_id).toBe(callId);
expect(spendData[0].call_type).toBe('pass_through_endpoint');
expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
expect(spendData[0].metadata).toHaveProperty('user_api_key');
expect(spendData[0].model).toContain('gemini');
expect(spendData[0].spend).toBeGreaterThan(0);
expect(spendData[0].custom_llm_provider).toBe('vertex_ai');
}, 25000);
}); |