File size: 6,780 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
const { VertexAI, RequestOptions } = require('@google-cloud/vertexai');
const fs = require('fs');
const path = require('path');
const os = require('os');
const { writeFileSync } = require('fs');


// Import fetch if the SDK uses it
const originalFetch = global.fetch || require('node-fetch');

let lastCallId;

// Monkey-patch the fetch used internally
global.fetch = async function patchedFetch(url, options) {
    // Modify the URL to use HTTP instead of HTTPS
    if (url.startsWith('https://127.0.0.1:4000')) {
        url = url.replace('https://', 'http://');
    }
    console.log('Patched fetch sending request to:', url);
    
    const response = await originalFetch(url, options);
    
    // Store the call ID if it exists
    lastCallId = response.headers.get('x-litellm-call-id');
        
    return response;
};

function loadVertexAiCredentials() {
    console.log("loading vertex ai credentials");
    const filepath = path.dirname(__filename);
    const vertexKeyPath = path.join(filepath, "vertex_key.json");

    // Initialize default empty service account data
    let serviceAccountKeyData = {};

    // Try to read existing vertex_key.json
    try {
        const content = fs.readFileSync(vertexKeyPath, 'utf8');
        if (content && content.trim()) {
            serviceAccountKeyData = JSON.parse(content);
        }
    } catch (error) {
        // File doesn't exist or is invalid, continue with empty object
    }

    // Update with environment variables
    const privateKeyId = process.env.VERTEX_AI_PRIVATE_KEY_ID || "";
    const privateKey = (process.env.VERTEX_AI_PRIVATE_KEY || "").replace(/\\n/g, "\n");
    
    serviceAccountKeyData.private_key_id = privateKeyId;
    serviceAccountKeyData.private_key = privateKey;

    // Create temporary file
    const tempFilePath = path.join(os.tmpdir(), `vertex-credentials-${Date.now()}.json`);
    writeFileSync(tempFilePath, JSON.stringify(serviceAccountKeyData, null, 2));
    
    // Set environment variable
    process.env.GOOGLE_APPLICATION_CREDENTIALS = tempFilePath;
}

// Run credential loading before tests
beforeAll(() => {
    loadVertexAiCredentials();
});



describe('Vertex AI Tests', () => {
    test('should successfully generate non-streaming content with tags', async () => {
        const vertexAI = new VertexAI({
            project: 'pathrise-convert-1606954137718',
            location: 'us-central1',
            apiEndpoint: "127.0.0.1:4000/vertex_ai"
        });

        const customHeaders = new Headers({
            "x-litellm-api-key": "sk-1234",
            "tags": "vertex-js-sdk,pass-through-endpoint"
        });

        const requestOptions = {
            customHeaders: customHeaders
        };

        const generativeModel = vertexAI.getGenerativeModel(
            { model: 'gemini-1.5-pro' },
            requestOptions
        );

        const request = {
            contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
        };

        const result = await generativeModel.generateContent(request);
        expect(result).toBeDefined();
        
        // Use the captured callId
        const callId = lastCallId;
        console.log("Captured Call ID:", callId);

        // Wait for spend to be logged
        await new Promise(resolve => setTimeout(resolve, 15000));

        // Check spend logs
        const spendResponse = await fetch(
            `http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
            {
                headers: {
                    'Authorization': 'Bearer sk-1234'
                }
            }
        );
        
        const spendData = await spendResponse.json();
        console.log("spendData", spendData)
        expect(spendData).toBeDefined();
        expect(spendData[0].request_id).toBe(callId);
        expect(spendData[0].call_type).toBe('pass_through_endpoint');
        expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
        expect(spendData[0].metadata).toHaveProperty('user_api_key');
        expect(spendData[0].model).toContain('gemini');
        expect(spendData[0].spend).toBeGreaterThan(0);
        expect(spendData[0].custom_llm_provider).toBe('vertex_ai');
    }, 25000);

    test('should successfully generate streaming content with tags', async () => {
        const vertexAI = new VertexAI({
            project: 'pathrise-convert-1606954137718',
            location: 'us-central1',
            apiEndpoint: "127.0.0.1:4000/vertex_ai"
        });

        const customHeaders = new Headers({
            "x-litellm-api-key": "sk-1234",
            "tags": "vertex-js-sdk,pass-through-endpoint"
        });

        const requestOptions = {
            customHeaders: customHeaders
        };

        const generativeModel = vertexAI.getGenerativeModel(
            { model: 'gemini-1.5-pro' },
            requestOptions
        );

        const request = {
            contents: [{role: 'user', parts: [{text: 'Say "hello test" and nothing else'}]}]
        };

        const streamingResult = await generativeModel.generateContentStream(request);
        expect(streamingResult).toBeDefined();


        // Add some assertions
        expect(streamingResult).toBeDefined();
        
        for await (const item of streamingResult.stream) {
            console.log('stream chunk:', JSON.stringify(item));
            expect(item).toBeDefined();
        }

        const aggregatedResponse = await streamingResult.response;
        console.log('aggregated response:', JSON.stringify(aggregatedResponse));
        expect(aggregatedResponse).toBeDefined();

        // Use the captured callId
        const callId = lastCallId;
        console.log("Captured Call ID:", callId);

        // Wait for spend to be logged
        await new Promise(resolve => setTimeout(resolve, 15000));

        // Check spend logs
        const spendResponse = await fetch(
            `http://127.0.0.1:4000/spend/logs?request_id=${callId}`,
            {
                headers: {
                    'Authorization': 'Bearer sk-1234'
                }
            }
        );
        
        const spendData = await spendResponse.json();
        console.log("spendData", spendData)
        expect(spendData).toBeDefined();
        expect(spendData[0].request_id).toBe(callId);
        expect(spendData[0].call_type).toBe('pass_through_endpoint');
        expect(spendData[0].request_tags).toEqual(['vertex-js-sdk', 'pass-through-endpoint']);
        expect(spendData[0].metadata).toHaveProperty('user_api_key');
        expect(spendData[0].model).toContain('gemini');
        expect(spendData[0].spend).toBeGreaterThan(0);
        expect(spendData[0].custom_llm_provider).toBe('vertex_ai');
    }, 25000);
});