Spaces:
Configuration error
Configuration error
File size: 21,111 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# What is this?
## Tests if 'get_end_user_object' works as expected
import sys, os, asyncio, time, random, uuid
import traceback
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, litellm
import httpx
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.auth.auth_checks import get_end_user_object
from litellm.caching.caching import DualCache
from litellm.proxy._types import (
LiteLLM_EndUserTable,
LiteLLM_BudgetTable,
LiteLLM_UserTable,
LiteLLM_TeamTable,
)
from litellm.proxy.utils import PrismaClient
from litellm.proxy.auth.auth_checks import (
can_team_access_model,
_virtual_key_soft_budget_check,
)
from litellm.proxy.utils import ProxyLogging
from litellm.proxy.utils import CallInfo
@pytest.mark.parametrize("customer_spend, customer_budget", [(0, 10), (10, 0)])
@pytest.mark.asyncio
async def test_get_end_user_object(customer_spend, customer_budget):
"""
Scenario 1: normal
Scenario 2: user over budget
"""
end_user_id = "my-test-customer"
_budget = LiteLLM_BudgetTable(max_budget=customer_budget)
end_user_obj = LiteLLM_EndUserTable(
user_id=end_user_id,
spend=customer_spend,
litellm_budget_table=_budget,
blocked=False,
)
_cache = DualCache()
_key = "end_user_id:{}".format(end_user_id)
_cache.set_cache(key=_key, value=end_user_obj)
try:
await get_end_user_object(
end_user_id=end_user_id,
prisma_client="RANDOM VALUE", # type: ignore
user_api_key_cache=_cache,
)
if customer_spend > customer_budget:
pytest.fail(
"Expected call to fail. Customer Spend={}, Customer Budget={}".format(
customer_spend, customer_budget
)
)
except Exception as e:
if (
isinstance(e, litellm.BudgetExceededError)
and customer_spend > customer_budget
):
pass
else:
pytest.fail(
"Expected call to work. Customer Spend={}, Customer Budget={}, Error={}".format(
customer_spend, customer_budget, str(e)
)
)
@pytest.mark.parametrize(
"model, expect_to_work",
[
("openai/gpt-4o-mini", True),
("openai/gpt-4o", False),
],
)
@pytest.mark.asyncio
async def test_can_key_call_model(model, expect_to_work):
"""
If wildcard model + specific model is used, choose the specific model settings
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"llm_model_list": llm_model_list,
"valid_token": UserAPIKeyAuth(
models=["public-openai-models"],
),
"llm_router": router,
}
if expect_to_work:
await can_key_call_model(**args)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(**args)
print(e)
@pytest.mark.parametrize(
"model, expect_to_work",
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
)
@pytest.mark.asyncio
async def test_can_team_call_model(model, expect_to_work):
from litellm.proxy.auth.auth_checks import model_in_access_group
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
"access_groups": ["public-openai-models"],
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
"access_groups": ["private-openai-models"],
},
},
]
router = litellm.Router(model_list=llm_model_list)
args = {
"model": model,
"team_models": ["public-openai-models"],
"llm_router": router,
}
if expect_to_work:
assert model_in_access_group(**args)
else:
assert not model_in_access_group(**args)
@pytest.mark.parametrize(
"key_models, model, expect_to_work",
[
(["openai/*"], "openai/gpt-4o", True),
(["openai/*"], "openai/gpt-4o-mini", True),
(["openai/*"], "openaiz/gpt-4o-mini", False),
(["bedrock/*"], "bedrock/anthropic.claude-3-5-sonnet-20240620", True),
(["bedrock/*"], "bedrockz/anthropic.claude-3-5-sonnet-20240620", False),
(["bedrock/us.*"], "bedrock/us.amazon.nova-micro-v1:0", True),
],
)
@pytest.mark.asyncio
async def test_can_key_call_model_wildcard_access(key_models, model, expect_to_work):
from litellm.proxy.auth.auth_checks import can_key_call_model
from fastapi import HTTPException
llm_model_list = [
{
"model_name": "openai/*",
"litellm_params": {
"model": "openai/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
},
},
{
"model_name": "bedrock/*",
"litellm_params": {
"model": "bedrock/*",
"api_key": "test-api-key",
},
"model_info": {
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
"db_model": False,
},
},
{
"model_name": "openai/gpt-4o",
"litellm_params": {
"model": "openai/gpt-4o",
"api_key": "test-api-key",
},
"model_info": {
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
"db_model": False,
},
},
]
router = litellm.Router(model_list=llm_model_list)
user_api_key_object = UserAPIKeyAuth(
models=key_models,
)
if expect_to_work:
await can_key_call_model(
model=model,
llm_model_list=llm_model_list,
valid_token=user_api_key_object,
llm_router=router,
)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(
model=model,
llm_model_list=llm_model_list,
valid_token=user_api_key_object,
llm_router=router,
)
print(e)
@pytest.mark.asyncio
async def test_is_valid_fallback_model():
from litellm.proxy.auth.auth_checks import is_valid_fallback_model
from litellm import Router
router = Router(
model_list=[
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "openai/gpt-3.5-turbo"},
}
]
)
try:
await is_valid_fallback_model(
model="gpt-3.5-turbo", llm_router=router, user_model=None
)
except Exception as e:
pytest.fail(f"Expected is_valid_fallback_model to work, got exception: {e}")
try:
await is_valid_fallback_model(
model="gpt-4o", llm_router=router, user_model=None
)
pytest.fail("Expected is_valid_fallback_model to fail")
except Exception as e:
assert "Invalid" in str(e)
@pytest.mark.parametrize(
"token_spend, max_budget, expect_budget_error",
[
(5.0, 10.0, False), # Under budget
(10.0, 10.0, True), # At budget limit
(15.0, 10.0, True), # Over budget
],
)
@pytest.mark.asyncio
async def test_virtual_key_max_budget_check(
token_spend, max_budget, expect_budget_error
):
"""
Test if virtual key budget checks work as expected:
1. Triggers budget alert for all cases
2. Raises BudgetExceededError when spend >= max_budget
"""
from litellm.proxy.auth.auth_checks import _virtual_key_max_budget_check
from litellm.proxy.utils import ProxyLogging
# Setup test data
valid_token = UserAPIKeyAuth(
token="test-token",
spend=token_spend,
max_budget=max_budget,
user_id="test-user",
key_alias="test-key",
)
user_obj = LiteLLM_UserTable(
user_id="test-user",
user_email="[email protected]",
max_budget=None,
)
proxy_logging_obj = ProxyLogging(
user_api_key_cache=None,
)
# Track if budget alert was called
alert_called = False
async def mock_budget_alert(*args, **kwargs):
nonlocal alert_called
alert_called = True
proxy_logging_obj.budget_alerts = mock_budget_alert
try:
await _virtual_key_max_budget_check(
valid_token=valid_token,
proxy_logging_obj=proxy_logging_obj,
user_obj=user_obj,
)
if expect_budget_error:
pytest.fail(
f"Expected BudgetExceededError for spend={token_spend}, max_budget={max_budget}"
)
except litellm.BudgetExceededError as e:
if not expect_budget_error:
pytest.fail(
f"Unexpected BudgetExceededError for spend={token_spend}, max_budget={max_budget}"
)
assert e.current_cost == token_spend
assert e.max_budget == max_budget
await asyncio.sleep(1)
# Verify budget alert was triggered
assert alert_called, "Budget alert should be triggered"
@pytest.mark.parametrize(
"model, team_models, expect_to_work",
[
("gpt-4", ["gpt-4"], True), # exact match
("gpt-4", ["all-proxy-models"], True), # all-proxy-models access
("gpt-4", ["*"], True), # wildcard access
("gpt-4", ["openai/*"], True), # openai wildcard access
(
"bedrock/anthropic.claude-3-5-sonnet-20240620",
["bedrock/*"],
True,
), # wildcard access
(
"bedrockz/anthropic.claude-3-5-sonnet-20240620",
["bedrock/*"],
False,
), # non-match wildcard access
("bedrock/very_new_model", ["bedrock/*"], True), # bedrock wildcard access
(
"bedrock/claude-3-5-sonnet-20240620",
["bedrock/claude-*"],
True,
), # match on pattern
(
"bedrock/claude-3-6-sonnet-20240620",
["bedrock/claude-3-5-*"],
False,
), # don't match on pattern
("openai/gpt-4o", ["openai/*"], True), # openai wildcard access
("gpt-4", ["gpt-3.5-turbo"], False), # model not in allowed list
("claude-3", [], True), # empty model list (allows all)
],
)
@pytest.mark.asyncio
async def test_can_team_access_model(model, team_models, expect_to_work):
"""
Test cases for can_team_access_model:
1. Exact model match
2. all-proxy-models access
3. Wildcard (*) access
4. OpenAI wildcard access
5. Model not in allowed list
6. Empty model list
7. None model list
"""
try:
team_object = LiteLLM_TeamTable(
team_id="test-team",
models=team_models,
)
result = can_team_access_model(
model=model,
team_object=team_object,
llm_router=None,
team_model_aliases=None,
)
if not expect_to_work:
pytest.fail(
f"Expected model access check to fail for model={model}, team_models={team_models}"
)
except Exception as e:
if expect_to_work:
pytest.fail(
f"Expected model access check to work for model={model}, team_models={team_models}. Got error: {str(e)}"
)
@pytest.mark.parametrize(
"spend, soft_budget, expect_alert",
[
(100, 50, True), # Over soft budget
(50, 50, True), # At soft budget
(25, 50, False), # Under soft budget
(100, None, False), # No soft budget set
],
)
@pytest.mark.asyncio
async def test_virtual_key_soft_budget_check(spend, soft_budget, expect_alert):
"""
Test cases for _virtual_key_soft_budget_check:
1. Spend over soft budget
2. Spend at soft budget
3. Spend under soft budget
4. No soft budget set
"""
alert_triggered = False
class MockProxyLogging:
async def budget_alerts(self, type, user_info):
nonlocal alert_triggered
alert_triggered = True
assert type == "soft_budget"
assert isinstance(user_info, CallInfo)
valid_token = UserAPIKeyAuth(
token="test-token",
spend=spend,
soft_budget=soft_budget,
user_id="test-user",
team_id="test-team",
key_alias="test-key",
)
proxy_logging_obj = MockProxyLogging()
await _virtual_key_soft_budget_check(
valid_token=valid_token,
proxy_logging_obj=proxy_logging_obj,
)
await asyncio.sleep(0.1) # Allow time for the alert task to complete
assert (
alert_triggered == expect_alert
), f"Expected alert_triggered to be {expect_alert} for spend={spend}, soft_budget={soft_budget}"
@pytest.mark.asyncio
async def test_can_user_call_model():
from litellm.proxy.auth.auth_checks import can_user_call_model
from litellm.proxy._types import ProxyException
from litellm import Router
router = Router(
model_list=[
{
"model_name": "anthropic-claude",
"litellm_params": {"model": "anthropic/anthropic-claude"},
},
{
"model_name": "gpt-3.5-turbo",
"litellm_params": {"model": "gpt-3.5-turbo", "api_key": "test-api-key"},
},
]
)
args = {
"model": "anthropic-claude",
"llm_router": router,
"user_object": LiteLLM_UserTable(
user_id="[email protected]",
max_budget=None,
spend=0.0042295,
model_max_budget={},
model_spend={},
user_email="[email protected]",
models=["gpt-3.5-turbo"],
),
}
with pytest.raises(ProxyException) as e:
await can_user_call_model(**args)
args["model"] = "gpt-3.5-turbo"
await can_user_call_model(**args)
@pytest.mark.asyncio
async def test_can_user_call_model_with_no_default_models():
from litellm.proxy.auth.auth_checks import can_user_call_model
from litellm.proxy._types import ProxyException, SpecialModelNames
from unittest.mock import MagicMock
args = {
"model": "anthropic-claude",
"llm_router": MagicMock(),
"user_object": LiteLLM_UserTable(
user_id="[email protected]",
max_budget=None,
spend=0.0042295,
model_max_budget={},
model_spend={},
user_email="[email protected]",
models=[SpecialModelNames.no_default_models.value],
),
}
with pytest.raises(ProxyException) as e:
await can_user_call_model(**args)
@pytest.mark.asyncio
async def test_get_fuzzy_user_object():
from litellm.proxy.auth.auth_checks import _get_fuzzy_user_object
from litellm.proxy.utils import PrismaClient
from unittest.mock import AsyncMock, MagicMock
# Setup mock Prisma client
mock_prisma = MagicMock()
mock_prisma.db = MagicMock()
mock_prisma.db.litellm_usertable = MagicMock()
# Mock user data
test_user = LiteLLM_UserTable(
user_id="test_123",
sso_user_id="sso_123",
user_email="[email protected]",
organization_memberships=[],
max_budget=None,
)
# Test 1: Find user by SSO ID
mock_prisma.db.litellm_usertable.find_unique = AsyncMock(return_value=test_user)
result = await _get_fuzzy_user_object(
prisma_client=mock_prisma, sso_user_id="sso_123", user_email="[email protected]"
)
assert result == test_user
mock_prisma.db.litellm_usertable.find_unique.assert_called_with(
where={"sso_user_id": "sso_123"}, include={"organization_memberships": True}
)
# Test 2: SSO ID not found, find by email
mock_prisma.db.litellm_usertable.find_unique = AsyncMock(return_value=None)
mock_prisma.db.litellm_usertable.find_first = AsyncMock(return_value=test_user)
mock_prisma.db.litellm_usertable.update = AsyncMock()
result = await _get_fuzzy_user_object(
prisma_client=mock_prisma,
sso_user_id="new_sso_456",
user_email="[email protected]",
)
assert result == test_user
mock_prisma.db.litellm_usertable.find_first.assert_called_with(
where={"user_email": "[email protected]"},
include={"organization_memberships": True},
)
# Test 3: Verify background SSO update task when user found by email
await asyncio.sleep(0.1) # Allow time for background task
mock_prisma.db.litellm_usertable.update.assert_called_with(
where={"user_id": "test_123"}, data={"sso_user_id": "new_sso_456"}
)
# Test 4: User not found by either method
mock_prisma.db.litellm_usertable.find_unique = AsyncMock(return_value=None)
mock_prisma.db.litellm_usertable.find_first = AsyncMock(return_value=None)
result = await _get_fuzzy_user_object(
prisma_client=mock_prisma,
sso_user_id="unknown_sso",
user_email="[email protected]",
)
assert result is None
# Test 5: Only email provided (no SSO ID)
mock_prisma.db.litellm_usertable.find_first = AsyncMock(return_value=test_user)
result = await _get_fuzzy_user_object(
prisma_client=mock_prisma, user_email="[email protected]"
)
assert result == test_user
mock_prisma.db.litellm_usertable.find_first.assert_called_with(
where={"user_email": "[email protected]"},
include={"organization_memberships": True},
)
# Test 6: Only SSO ID provided (no email)
mock_prisma.db.litellm_usertable.find_unique = AsyncMock(return_value=test_user)
result = await _get_fuzzy_user_object(
prisma_client=mock_prisma, sso_user_id="sso_123"
)
assert result == test_user
mock_prisma.db.litellm_usertable.find_unique.assert_called_with(
where={"sso_user_id": "sso_123"}, include={"organization_memberships": True}
)
@pytest.mark.parametrize(
"model, alias_map, expect_to_work",
[
("gpt-4", {"gpt-4": "gpt-4-team1"}, True), # model matches alias value
("gpt-5", {"gpt-4": "gpt-4-team1"}, False),
],
)
@pytest.mark.asyncio
async def test_can_key_call_model_with_aliases(model, alias_map, expect_to_work):
"""
Test if can_key_call_model correctly handles model aliases in the token
"""
from litellm.proxy.auth.auth_checks import can_key_call_model
llm_model_list = [
{
"model_name": "gpt-4-team1",
"litellm_params": {
"model": "gpt-4",
"api_key": "test-api-key",
},
}
]
router = litellm.Router(model_list=llm_model_list)
user_api_key_object = UserAPIKeyAuth(
models=[
"gpt-4-team1",
],
team_model_aliases=alias_map,
)
if expect_to_work:
await can_key_call_model(
model=model,
llm_model_list=llm_model_list,
valid_token=user_api_key_object,
llm_router=router,
)
else:
with pytest.raises(Exception) as e:
await can_key_call_model(
model=model,
llm_model_list=llm_model_list,
valid_token=user_api_key_object,
llm_router=router,
)
|