Spaces:
Configuration error
Configuration error
File size: 10,568 Bytes
447ebeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io, asyncio
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, time
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
import importlib, inspect
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import (
router,
save_worker_config,
initialize,
) # Replace with the actual module where your FastAPI router is defined
filepath = os.path.dirname(os.path.abspath(__file__))
python_file_path = f"{filepath}/test_configs/custom_callbacks.py"
@pytest.fixture
def client():
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_custom_logger.yaml"
app = FastAPI()
asyncio.run(initialize(config=config_fp))
app.include_router(router) # Include your router in the test app
return TestClient(app)
# Your bearer token
token = os.getenv("PROXY_MASTER_KEY")
headers = {"Authorization": f"Bearer {token}"}
print("Testing proxy custom logger")
def test_embedding(client):
try:
litellm.set_verbose = False
from litellm.proxy.types_utils.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
# Your test data
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
# assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
print("my_custom_logger", my_custom_logger)
assert my_custom_logger.async_success_embedding is False
test_data = {"model": "azure-embedding-model", "input": ["hello"]}
response = client.post("/embeddings", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
print(
"vars my custom logger /embeddings",
vars(my_custom_logger),
"id",
id(my_custom_logger),
)
assert (
my_custom_logger.async_success_embedding is True
) # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert (
my_custom_logger.async_embedding_kwargs["model"] == "azure-embedding-model"
) # checks if kwargs passed to async_log_success_event are correct
kwargs = my_custom_logger.async_embedding_kwargs
litellm_params = kwargs.get("litellm_params")
metadata = litellm_params.get("metadata", None)
print("\n\n Metadata in custom logger kwargs", litellm_params.get("metadata"))
assert metadata is not None
assert "user_api_key" in metadata
assert "headers" in metadata
proxy_server_request = litellm_params.get("proxy_server_request")
model_info = litellm_params.get("model_info")
assert proxy_server_request == {
"url": "http://testserver/embeddings",
"method": "POST",
"headers": {
"host": "testserver",
"accept": "*/*",
"accept-encoding": "gzip, deflate, zstd",
"connection": "keep-alive",
"user-agent": "testclient",
"content-length": "51",
"content-type": "application/json",
},
"body": {"model": "azure-embedding-model", "input": ["hello"]},
}
assert model_info == {
"input_cost_per_token": 0.002,
"mode": "embedding",
"id": "hello",
"db_model": False,
}
result = response.json()
print(f"Received response: {result}")
print("Passed Embedding custom logger on proxy!")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
def test_chat_completion(client):
try:
# Your test data
litellm.set_verbose = False
from litellm.proxy.types_utils.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
# import the initialized custom logger
print(litellm.callbacks)
# assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
print("LiteLLM Callbacks", litellm.callbacks)
print("my_custom_logger", my_custom_logger)
assert my_custom_logger.async_success == False
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{"role": "user", "content": "write a litellm poem"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
print("LiteLLM Callbacks", litellm.callbacks)
time.sleep(1) # sleep while waiting for callback to run
print(
"my_custom_logger in /chat/completions",
my_custom_logger,
"id",
id(my_custom_logger),
)
print("vars my custom logger, ", vars(my_custom_logger))
assert (
my_custom_logger.async_success == True
) # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert (
my_custom_logger.async_completion_kwargs["model"] == "chatgpt-v-3"
) # checks if kwargs passed to async_log_success_event are correct
print(
"\n\n Custom Logger Async Completion args",
my_custom_logger.async_completion_kwargs,
)
litellm_params = my_custom_logger.async_completion_kwargs.get("litellm_params")
metadata = litellm_params.get("metadata", None)
print("\n\n Metadata in custom logger kwargs", litellm_params.get("metadata"))
assert metadata is not None
assert "user_api_key" in metadata
assert "user_api_key_metadata" in metadata
assert "headers" in metadata
config_model_info = litellm_params.get("model_info")
proxy_server_request_object = litellm_params.get("proxy_server_request")
assert config_model_info == {
"id": "gm",
"input_cost_per_token": 0.0002,
"mode": "chat",
"db_model": False,
}
assert "authorization" not in proxy_server_request_object["headers"]
assert proxy_server_request_object == {
"url": "http://testserver/chat/completions",
"method": "POST",
"headers": {
"host": "testserver",
"accept": "*/*",
"accept-encoding": "gzip, deflate, zstd",
"connection": "keep-alive",
"user-agent": "testclient",
"content-length": "115",
"content-type": "application/json",
},
"body": {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [{"role": "user", "content": "write a litellm poem"}],
"max_tokens": 10,
},
}
result = response.json()
print(f"Received response: {result}")
print("\nPassed /chat/completions with Custom Logger!")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
def test_chat_completion_stream(client):
try:
# Your test data
litellm.set_verbose = False
from litellm.proxy.types_utils.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
import json
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
print("LiteLLM Callbacks", litellm.callbacks)
print("my_custom_logger", my_custom_logger)
assert (
my_custom_logger.streaming_response_obj == None
) # no streaming response obj is set pre call
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{"role": "user", "content": "write 1 line poem about LiteLLM"},
],
"max_tokens": 40,
"stream": True, # streaming call
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
complete_response = ""
for line in response.iter_lines():
if line:
# Process the streaming data line here
print("\n\n Line", line)
print(line)
line = str(line)
json_data = line.replace("data: ", "")
if "[DONE]" in json_data:
break
# Parse the JSON string
data = json.loads(json_data)
print("\n\n decode_data", data)
# Access the content of choices[0]['message']['content']
content = data["choices"][0]["delta"].get("content", None) or ""
# Process the content as needed
print("Content:", content)
complete_response += content
print("\n\nHERE is the complete streaming response string", complete_response)
print("\n\nHERE IS the streaming Response from callback\n\n")
print(my_custom_logger.streaming_response_obj)
import time
time.sleep(0.5)
streamed_response = my_custom_logger.streaming_response_obj
assert (
complete_response == streamed_response["choices"][0]["message"]["content"]
)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|