File size: 9,545 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# import sys, os, time
# import traceback
# from dotenv import load_dotenv

# load_dotenv()
# import os, io

# # this file is to test litellm/proxy

# sys.path.insert(
#     0, os.path.abspath("../..")
# )  # Adds the parent directory to the system path
# import pytest, logging
# import litellm
# from litellm import embedding, completion, completion_cost, Timeout
# from litellm import RateLimitError


# import sys, os, time
# import traceback
# from dotenv import load_dotenv

# load_dotenv()
# import os, io

# # this file is to test litellm/proxy
# from concurrent.futures import ThreadPoolExecutor

# sys.path.insert(
#     0, os.path.abspath("../..")
# )  # Adds the parent directory to the system path

# import pytest, logging, requests
# import litellm
# from litellm import embedding, completion, completion_cost, Timeout
# from litellm import RateLimitError
# from github import Github
# import subprocess


# # Function to execute a command and return the output
# def run_command(command):
#     process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True)
#     output, _ = process.communicate()
#     return output.decode().strip()


# # Retrieve the current branch name
# branch_name = run_command("git rev-parse --abbrev-ref HEAD")

# # GitHub personal access token (with repo scope) or use username and password
# access_token = os.getenv("GITHUB_ACCESS_TOKEN")
# # Instantiate the PyGithub library's Github object
# g = Github(access_token)

# # Provide the owner and name of the repository where the pull request is located
# repository_owner = "BerriAI"
# repository_name = "litellm"

# # Get the repository object
# repo = g.get_repo(f"{repository_owner}/{repository_name}")

# # Iterate through the pull requests to find the one related to your branch
# for pr in repo.get_pulls():
#     print(f"in here! {pr.head.ref}")
#     if pr.head.ref == branch_name:
#         pr_number = pr.number
#         break

# print(f"The pull request number for branch {branch_name} is: {pr_number}")


# def test_add_new_key():
#     max_retries = 3
#     retry_delay = 10  # seconds

#     for retry in range(max_retries + 1):
#         try:
#             # Your test data
#             test_data = {
#                 "models": ["gpt-3.5-turbo", "gpt-4", "claude-2", "azure-model"],
#                 "aliases": {"mistral-7b": "gpt-3.5-turbo"},
#                 "duration": "20m",
#             }
#             print("testing proxy server")

#             # Your bearer token
#             token = os.getenv("PROXY_MASTER_KEY")
#             headers = {"Authorization": f"Bearer {token}"}

#             endpoint = f"https://litellm-litellm-pr-{pr_number}.up.railway.app"

#             # Make a request to the staging endpoint
#             response = requests.post(
#                 endpoint + "/key/generate", json=test_data, headers=headers
#             )

#             print(f"response: {response.text}")

#             if response.status_code == 200:
#                 result = response.json()
#                 break  # Successful response, exit the loop
#             elif response.status_code == 503 and retry < max_retries:
#                 print(
#                     f"Retrying in {retry_delay} seconds... (Retry {retry + 1}/{max_retries})"
#                 )
#                 time.sleep(retry_delay)
#             else:
#                 assert False, f"Unexpected response status code: {response.status_code}"

#         except Exception as e:
#             print(traceback.format_exc())
#             pytest.fail(f"An error occurred {e}")


# def test_update_new_key():
#     try:
#         # Your test data
#         test_data = {
#             "models": ["gpt-3.5-turbo", "gpt-4", "claude-2", "azure-model"],
#             "aliases": {"mistral-7b": "gpt-3.5-turbo"},
#             "duration": "20m",
#         }
#         print("testing proxy server")
#         # Your bearer token
#         token = os.getenv("PROXY_MASTER_KEY")
#         headers = {"Authorization": f"Bearer {token}"}

#         endpoint = f"https://litellm-litellm-pr-{pr_number}.up.railway.app"

#         # Make a request to the staging endpoint
#         response = requests.post(
#             endpoint + "/key/generate", json=test_data, headers=headers
#         )
#         assert response.status_code == 200
#         result = response.json()
#         assert result["key"].startswith("sk-")

#         def _post_data():
#             json_data = {"models": ["bedrock-models"], "key": result["key"]}
#             response = requests.post(
#                 endpoint + "/key/generate", json=json_data, headers=headers
#             )
#             print(f"response text: {response.text}")
#             assert response.status_code == 200
#             return response

#         _post_data()
#         print(f"Received response: {result}")
#     except Exception as e:
#         pytest.fail(f"LiteLLM Proxy test failed. Exception: {str(e)}")

# def test_add_new_key_max_parallel_limit():
#     try:
#         # Your test data
#         test_data = {"duration": "20m", "max_parallel_requests": 1}
#         # Your bearer token
#         token = os.getenv("PROXY_MASTER_KEY")
#         headers = {"Authorization": f"Bearer {token}"}

#         endpoint = f"https://litellm-litellm-pr-{pr_number}.up.railway.app"
#         print(f"endpoint: {endpoint}")
#         # Make a request to the staging endpoint
#         response = requests.post(
#             endpoint + "/key/generate", json=test_data, headers=headers
#         )
#         assert response.status_code == 200
#         result = response.json()

#         # load endpoint with model
#         model_data = {
#             "model_name": "azure-model",
#             "litellm_params": {
#                 "model": "azure/chatgpt-v-3",
#                 "api_key": os.getenv("AZURE_API_KEY"),
#                 "api_base": os.getenv("AZURE_API_BASE"),
#                 "api_version": os.getenv("AZURE_API_VERSION")
#             }
#         }
#         response = requests.post(endpoint + "/model/new", json=model_data, headers=headers)
#         assert response.status_code == 200
#         print(f"response text: {response.text}")


#         def _post_data():
#             json_data = {
#                 "model": "azure-model",
#                 "messages": [
#                     {
#                         "role": "user",
#                         "content": f"this is a test request, write a short poem {time.time()}",
#                     }
#                 ],
#             }
#             # Your bearer token
#             response = requests.post(
#                 endpoint + "/chat/completions", json=json_data, headers={"Authorization": f"Bearer {result['key']}"}
#             )
#             return response

#         def _run_in_parallel():
#             with ThreadPoolExecutor(max_workers=2) as executor:
#                 future1 = executor.submit(_post_data)
#                 future2 = executor.submit(_post_data)

#                 # Obtain the results from the futures
#                 response1 = future1.result()
#                 print(f"response1 text: {response1.text}")
#                 response2 = future2.result()
#                 print(f"response2 text: {response2.text}")
#                 if response1.status_code == 429 or response2.status_code == 429:
#                     pass
#                 else:
#                     raise Exception()

#         _run_in_parallel()
#     except Exception as e:
#         pytest.fail(f"LiteLLM Proxy test failed. Exception: {str(e)}")

# def test_add_new_key_max_parallel_limit_streaming():
#     try:
#         # Your test data
#         test_data = {"duration": "20m", "max_parallel_requests": 1}
#         # Your bearer token
#         token = os.getenv("PROXY_MASTER_KEY")
#         headers = {"Authorization": f"Bearer {token}"}

#         endpoint = f"https://litellm-litellm-pr-{pr_number}.up.railway.app"

#         # Make a request to the staging endpoint
#         response = requests.post(
#             endpoint + "/key/generate", json=test_data, headers=headers
#         )
#         print(f"response: {response.text}")
#         assert response.status_code == 200
#         result = response.json()

#         def _post_data():
#             json_data = {
#                 "model": "azure-model",
#                 "messages": [
#                     {
#                         "role": "user",
#                         "content": f"this is a test request, write a short poem {time.time()}",
#                     }
#                 ],
#                 "stream": True,
#             }
#             response = requests.post(
#                 endpoint + "/chat/completions", json=json_data, headers={"Authorization": f"Bearer {result['key']}"}
#             )
#             return response

#         def _run_in_parallel():
#             with ThreadPoolExecutor(max_workers=2) as executor:
#                 future1 = executor.submit(_post_data)
#                 future2 = executor.submit(_post_data)

#                 # Obtain the results from the futures
#                 response1 = future1.result()
#                 response2 = future2.result()
#                 if response1.status_code == 429 or response2.status_code == 429:
#                     pass
#                 else:
#                     raise Exception()

#         _run_in_parallel()
#     except Exception as e:
#         pytest.fail(f"LiteLLM Proxy test failed. Exception: {str(e)}")