File size: 10,576 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# What is this?
## This tests if the proxy fallbacks work as expected
import pytest
import asyncio
import aiohttp
from tests.large_text import text
import time
from typing import Optional


async def generate_key(
    session,
    i,
    models: list,
    calling_key="sk-1234",
):
    url = "http://0.0.0.0:4000/key/generate"
    headers = {
        "Authorization": f"Bearer {calling_key}",
        "Content-Type": "application/json",
    }
    data = {
        "models": models,
    }

    print(f"data: {data}")

    async with session.post(url, headers=headers, json=data) as response:
        status = response.status
        response_text = await response.text()

        print(f"Response {i} (Status code: {status}):")
        print(response_text)
        print()

        if status != 200:
            raise Exception(f"Request {i} did not return a 200 status code: {status}")

        return await response.json()


async def chat_completion(
    session,
    key: str,
    model: str,
    messages: list,
    return_headers: bool = False,
    extra_headers: Optional[dict] = None,
    **kwargs,
):
    url = "http://0.0.0.0:4000/chat/completions"
    headers = {
        "Authorization": f"Bearer {key}",
        "Content-Type": "application/json",
    }
    if extra_headers is not None:
        headers.update(extra_headers)
    data = {"model": model, "messages": messages, **kwargs}

    async with session.post(url, headers=headers, json=data) as response:
        status = response.status
        response_text = await response.text()

        print(response_text)
        print()

        if status != 200:
            if return_headers:
                return None, response.headers
            else:
                raise Exception(f"Request did not return a 200 status code: {status}")

        if return_headers:
            return await response.json(), response.headers
        else:
            return await response.json()


@pytest.mark.asyncio
async def test_chat_completion():
    """
    make chat completion call with prompt > context window. expect it to work with fallback
    """
    async with aiohttp.ClientSession() as session:
        model = "gpt-3.5-turbo"
        messages = [
            {"role": "system", "content": text},
            {"role": "user", "content": "Who was Alexander?"},
        ]
        await chat_completion(
            session=session, key="sk-1234", model=model, messages=messages
        )


@pytest.mark.parametrize("has_access", [True, False])
@pytest.mark.asyncio
async def test_chat_completion_client_fallbacks(has_access):
    """
    make chat completion call with prompt > context window. expect it to work with fallback
    """

    async with aiohttp.ClientSession() as session:
        models = ["gpt-3.5-turbo"]

        if has_access:
            models.append("gpt-instruct")

        ## CREATE KEY WITH MODELS
        generated_key = await generate_key(session=session, i=0, models=models)
        calling_key = generated_key["key"]
        model = "gpt-3.5-turbo"
        messages = [
            {"role": "user", "content": "Who was Alexander?"},
        ]

        ## CALL PROXY
        try:
            await chat_completion(
                session=session,
                key=calling_key,
                model=model,
                messages=messages,
                mock_testing_fallbacks=True,
                fallbacks=["gpt-instruct"],
            )
            if not has_access:
                pytest.fail(
                    "Expected this to fail, submitted fallback model that key did not have access to"
                )
        except Exception as e:
            if has_access:
                pytest.fail("Expected this to work: {}".format(str(e)))


@pytest.mark.asyncio
async def test_chat_completion_with_retries():
    """
    make chat completion call with prompt > context window. expect it to work with fallback
    """
    async with aiohttp.ClientSession() as session:
        model = "fake-openai-endpoint-4"
        messages = [
            {"role": "system", "content": text},
            {"role": "user", "content": "Who was Alexander?"},
        ]
        response, headers = await chat_completion(
            session=session,
            key="sk-1234",
            model=model,
            messages=messages,
            mock_testing_rate_limit_error=True,
            return_headers=True,
        )
        print(f"headers: {headers}")
        assert headers["x-litellm-attempted-retries"] == "1"
        assert headers["x-litellm-max-retries"] == "50"


@pytest.mark.asyncio
async def test_chat_completion_with_fallbacks():
    """
    make chat completion call with prompt > context window. expect it to work with fallback
    """
    async with aiohttp.ClientSession() as session:
        model = "badly-configured-openai-endpoint"
        messages = [
            {"role": "system", "content": text},
            {"role": "user", "content": "Who was Alexander?"},
        ]
        response, headers = await chat_completion(
            session=session,
            key="sk-1234",
            model=model,
            messages=messages,
            fallbacks=["fake-openai-endpoint-5"],
            return_headers=True,
        )
        print(f"headers: {headers}")
        assert headers["x-litellm-attempted-fallbacks"] == "1"


@pytest.mark.asyncio
async def test_chat_completion_with_timeout():
    """
    make chat completion call with low timeout and `mock_timeout`: true. Expect it to fail and correct timeout to be set in headers.
    """
    async with aiohttp.ClientSession() as session:
        model = "fake-openai-endpoint-5"
        messages = [
            {"role": "system", "content": text},
            {"role": "user", "content": "Who was Alexander?"},
        ]
        start_time = time.time()
        response, headers = await chat_completion(
            session=session,
            key="sk-1234",
            model=model,
            messages=messages,
            num_retries=0,
            mock_timeout=True,
            return_headers=True,
        )
        end_time = time.time()
        print(f"headers: {headers}")
        assert (
            headers["x-litellm-timeout"] == "1.0"
        )  # assert model-specific timeout used


@pytest.mark.asyncio
async def test_chat_completion_with_timeout_from_request():
    """
    make chat completion call with low timeout and `mock_timeout`: true. Expect it to fail and correct timeout to be set in headers.
    """
    async with aiohttp.ClientSession() as session:
        model = "fake-openai-endpoint-5"
        messages = [
            {"role": "system", "content": text},
            {"role": "user", "content": "Who was Alexander?"},
        ]
        extra_headers = {
            "x-litellm-timeout": "0.001",
        }
        start_time = time.time()
        response, headers = await chat_completion(
            session=session,
            key="sk-1234",
            model=model,
            messages=messages,
            num_retries=0,
            mock_timeout=True,
            extra_headers=extra_headers,
            return_headers=True,
        )
        end_time = time.time()
        print(f"headers: {headers}")
        assert (
            headers["x-litellm-timeout"] == "0.001"
        )  # assert model-specific timeout used


@pytest.mark.parametrize("has_access", [True, False])
@pytest.mark.asyncio
async def test_chat_completion_client_fallbacks_with_custom_message(has_access):
    """
    make chat completion call with prompt > context window. expect it to work with fallback
    """

    async with aiohttp.ClientSession() as session:
        models = ["gpt-3.5-turbo"]

        if has_access:
            models.append("gpt-instruct")

        ## CREATE KEY WITH MODELS
        generated_key = await generate_key(session=session, i=0, models=models)
        calling_key = generated_key["key"]
        model = "gpt-3.5-turbo"
        messages = [
            {"role": "user", "content": "Who was Alexander?"},
        ]

        ## CALL PROXY
        try:
            await chat_completion(
                session=session,
                key=calling_key,
                model=model,
                messages=messages,
                mock_testing_fallbacks=True,
                fallbacks=[
                    {
                        "model": "gpt-instruct",
                        "messages": [
                            {
                                "role": "assistant",
                                "content": "This is a custom message",
                            }
                        ],
                    }
                ],
            )
            if not has_access:
                pytest.fail(
                    "Expected this to fail, submitted fallback model that key did not have access to"
                )
        except Exception as e:
            if has_access:
                pytest.fail("Expected this to work: {}".format(str(e)))


import asyncio
from openai import AsyncOpenAI
from typing import List
import time


async def make_request(client: AsyncOpenAI, model: str) -> bool:
    try:
        await client.chat.completions.create(
            model=model,
            messages=[{"role": "user", "content": "Who was Alexander?"}],
        )
        return True
    except Exception as e:
        print(f"Error with {model}: {str(e)}")
        return False


async def run_good_model_test(client: AsyncOpenAI, num_requests: int) -> bool:
    tasks = [make_request(client, "good-model") for _ in range(num_requests)]
    good_results = await asyncio.gather(*tasks)
    return all(good_results)


@pytest.mark.asyncio
async def test_chat_completion_bad_and_good_model():
    """
    Prod test - ensure even if bad model is down, good model is still working.
    """
    client = AsyncOpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
    num_requests = 100
    num_iterations = 3

    for iteration in range(num_iterations):
        print(f"\nIteration {iteration + 1}/{num_iterations}")
        start_time = time.time()

        # Fire and forget bad model requests
        for _ in range(num_requests):
            asyncio.create_task(make_request(client, "bad-model"))

        # Wait only for good model requests
        success = await run_good_model_test(client, num_requests)
        print(
            f"Iteration {iteration + 1}: {'✓' if success else '✗'} ({time.time() - start_time:.2f}s)"
        )
        assert success, "Not all good model requests succeeded"