File size: 8,326 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import json
import os
import sys
from typing import Optional

# Adds the grandparent directory to sys.path to allow importing project modules
sys.path.insert(0, os.path.abspath("../.."))

import asyncio

import pytest

import litellm
from litellm.integrations._types.open_inference import (
    MessageAttributes,
    SpanAttributes,
    ToolCallAttributes,
)
from litellm.integrations.arize.arize import ArizeLogger
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Choices, StandardCallbackDynamicParams


def test_arize_set_attributes():
    """
    Test setting attributes for Arize, including all custom LLM attributes.
    Ensures that the correct span attributes are being added during a request.
    """
    from unittest.mock import MagicMock

    from litellm.types.utils import ModelResponse

    span = MagicMock()  # Mocked tracing span to test attribute setting

    # Construct kwargs to simulate a real LLM request scenario
    kwargs = {
        "model": "gpt-4o",
        "messages": [{"role": "user", "content": "Basic Request Content"}],
        "standard_logging_object": {
            "model_parameters": {"user": "test_user"},
            "metadata": {"key_1": "value_1", "key_2": None},
            "call_type": "completion",
        },
        "optional_params": {
            "max_tokens": "100",
            "temperature": "1",
            "top_p": "5",
            "stream": False,
            "user": "test_user",
            "tools": [
                {
                    "function": {
                        "name": "get_weather",
                        "description": "Fetches weather details.",
                        "parameters": {
                            "type": "object",
                            "properties": {
                                "location": {
                                    "type": "string",
                                    "description": "City name",
                                }
                            },
                            "required": ["location"],
                        },
                    }
                }
            ],
            "functions": [{"name": "get_weather"}, {"name": "get_stock_price"}],
        },
        "litellm_params": {"custom_llm_provider": "openai"},
    }

    # Simulated LLM response object
    response_obj = ModelResponse(
        usage={"total_tokens": 100, "completion_tokens": 60, "prompt_tokens": 40},
        choices=[
            Choices(message={"role": "assistant", "content": "Basic Response Content"})
        ],
        model="gpt-4o",
        id="chatcmpl-ID",
    )

    # Apply attribute setting via ArizeLogger
    ArizeLogger.set_arize_attributes(span, kwargs, response_obj)

    # Validate that the expected number of attributes were set
    assert span.set_attribute.call_count == 28

    # Metadata attached to the span
    span.set_attribute.assert_any_call(
        SpanAttributes.METADATA, json.dumps({"key_1": "value_1", "key_2": None})
    )

    # Basic LLM information
    span.set_attribute.assert_any_call(SpanAttributes.LLM_MODEL_NAME, "gpt-4o")
    span.set_attribute.assert_any_call("llm.request.type", "completion")
    span.set_attribute.assert_any_call(SpanAttributes.LLM_PROVIDER, "openai")

    # LLM generation parameters
    span.set_attribute.assert_any_call("llm.request.max_tokens", "100")
    span.set_attribute.assert_any_call("llm.request.temperature", "1")
    span.set_attribute.assert_any_call("llm.request.top_p", "5")

    # Streaming and user info
    span.set_attribute.assert_any_call("llm.is_streaming", "False")
    span.set_attribute.assert_any_call("llm.user", "test_user")

    # Response metadata
    span.set_attribute.assert_any_call("llm.response.id", "chatcmpl-ID")
    span.set_attribute.assert_any_call("llm.response.model", "gpt-4o")
    span.set_attribute.assert_any_call(SpanAttributes.OPENINFERENCE_SPAN_KIND, "LLM")

    # Request message content and metadata
    span.set_attribute.assert_any_call(
        SpanAttributes.INPUT_VALUE, "Basic Request Content"
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
        "user",
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
        "Basic Request Content",
    )

    # Tool call definitions and function names
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_NAME}", "get_weather"
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_DESCRIPTION}",
        "Fetches weather details.",
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_PARAMETERS}",
        json.dumps(
            {
                "type": "object",
                "properties": {
                    "location": {"type": "string", "description": "City name"}
                },
                "required": ["location"],
            }
        ),
    )

    # Tool calls captured from optional_params
    span.set_attribute.assert_any_call(
        f"{MessageAttributes.MESSAGE_TOOL_CALLS}.0.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
        "get_weather",
    )
    span.set_attribute.assert_any_call(
        f"{MessageAttributes.MESSAGE_TOOL_CALLS}.1.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
        "get_stock_price",
    )

    # Invocation parameters
    span.set_attribute.assert_any_call(
        SpanAttributes.LLM_INVOCATION_PARAMETERS, '{"user": "test_user"}'
    )

    # User ID
    span.set_attribute.assert_any_call(SpanAttributes.USER_ID, "test_user")

    # Output message content
    span.set_attribute.assert_any_call(
        SpanAttributes.OUTPUT_VALUE, "Basic Response Content"
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
        "assistant",
    )
    span.set_attribute.assert_any_call(
        f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
        "Basic Response Content",
    )

    # Token counts
    span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_TOTAL, 100)
    span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, 60)
    span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_PROMPT, 40)


class TestArizeLogger(CustomLogger):
    """
    Custom logger implementation to capture standard_callback_dynamic_params.
    Used to verify that dynamic config keys are being passed to callbacks.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.standard_callback_dynamic_params: Optional[
            StandardCallbackDynamicParams
        ] = None

    async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
        # Capture dynamic params and print them for verification
        print("logged kwargs", json.dumps(kwargs, indent=4, default=str))
        self.standard_callback_dynamic_params = kwargs.get(
            "standard_callback_dynamic_params"
        )


@pytest.mark.asyncio
async def test_arize_dynamic_params():
    """
    Test to ensure that dynamic Arize keys (API key and space key)
    are received inside the callback logger at runtime.
    """
    test_arize_logger = TestArizeLogger()
    litellm.callbacks = [test_arize_logger]

    # Perform a mocked async completion call to trigger logging
    await litellm.acompletion(
        model="gpt-4o",
        messages=[{"role": "user", "content": "Basic Request Content"}],
        mock_response="test",
        arize_api_key="test_api_key_dynamic",
        arize_space_key="test_space_key_dynamic",
    )

    # Allow for async propagation
    await asyncio.sleep(2)

    # Assert dynamic parameters were received in the callback
    assert test_arize_logger.standard_callback_dynamic_params is not None
    assert (
        test_arize_logger.standard_callback_dynamic_params.get("arize_api_key")
        == "test_api_key_dynamic"
    )
    assert (
        test_arize_logger.standard_callback_dynamic_params.get("arize_space_key")
        == "test_space_key_dynamic"
    )