File size: 8,314 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import json
import os
import sys

import pytest

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path

from unittest.mock import MagicMock, patch

from pydantic import BaseModel

import litellm
from litellm.cost_calculator import (
    handle_realtime_stream_cost_calculation,
    response_cost_calculator,
)
from litellm.types.llms.openai import OpenAIRealtimeStreamList
from litellm.types.utils import ModelResponse, PromptTokensDetailsWrapper, Usage


def test_cost_calculator_with_response_cost_in_additional_headers():
    class MockResponse(BaseModel):
        _hidden_params = {
            "additional_headers": {"llm_provider-x-litellm-response-cost": 1000}
        }

    result = response_cost_calculator(
        response_object=MockResponse(),
        model="",
        custom_llm_provider=None,
        call_type="",
        optional_params={},
        cache_hit=None,
        base_model=None,
    )

    assert result == 1000


def test_cost_calculator_with_usage():
    from litellm import get_model_info

    os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
    litellm.model_cost = litellm.get_model_cost_map(url="")

    usage = Usage(
        prompt_tokens=100,
        completion_tokens=100,
        prompt_tokens_details=PromptTokensDetailsWrapper(
            text_tokens=10, audio_tokens=90
        ),
    )
    mr = ModelResponse(usage=usage, model="gemini-2.0-flash-001")

    result = response_cost_calculator(
        response_object=mr,
        model="",
        custom_llm_provider="vertex_ai",
        call_type="acompletion",
        optional_params={},
        cache_hit=None,
        base_model=None,
    )

    model_info = litellm.model_cost["gemini-2.0-flash-001"]

    expected_cost = (
        usage.prompt_tokens_details.audio_tokens
        * model_info["input_cost_per_audio_token"]
        + usage.prompt_tokens_details.text_tokens * model_info["input_cost_per_token"]
        + usage.completion_tokens * model_info["output_cost_per_token"]
    )

    assert result == expected_cost, f"Got {result}, Expected {expected_cost}"


def test_handle_realtime_stream_cost_calculation():
    from litellm.cost_calculator import RealtimeAPITokenUsageProcessor

    # Setup test data
    results: OpenAIRealtimeStreamList = [
        {"type": "session.created", "session": {"model": "gpt-3.5-turbo"}},
        {
            "type": "response.done",
            "response": {
                "usage": {"input_tokens": 100, "output_tokens": 50, "total_tokens": 150}
            },
        },
        {
            "type": "response.done",
            "response": {
                "usage": {
                    "input_tokens": 200,
                    "output_tokens": 100,
                    "total_tokens": 300,
                }
            },
        },
    ]

    combined_usage_object = RealtimeAPITokenUsageProcessor.collect_and_combine_usage_from_realtime_stream_results(
        results=results,
    )

    # Test with explicit model name
    cost = handle_realtime_stream_cost_calculation(
        results=results,
        combined_usage_object=combined_usage_object,
        custom_llm_provider="openai",
        litellm_model_name="gpt-3.5-turbo",
    )

    # Calculate expected cost
    # gpt-3.5-turbo costs: $0.0015/1K tokens input, $0.002/1K tokens output
    expected_cost = (300 * 0.0015 / 1000) + (  # input tokens (100 + 200)
        150 * 0.002 / 1000
    )  # output tokens (50 + 100)
    assert (
        abs(cost - expected_cost) <= 0.00075
    )  # Allow small floating point differences

    # Test with different model name in session
    results[0]["session"]["model"] = "gpt-4"

    cost = handle_realtime_stream_cost_calculation(
        results=results,
        combined_usage_object=combined_usage_object,
        custom_llm_provider="openai",
        litellm_model_name="gpt-3.5-turbo",
    )

    # Calculate expected cost using gpt-4 rates
    # gpt-4 costs: $0.03/1K tokens input, $0.06/1K tokens output
    expected_cost = (300 * 0.03 / 1000) + (  # input tokens
        150 * 0.06 / 1000
    )  # output tokens
    assert abs(cost - expected_cost) < 0.00076

    # Test with no response.done events
    results = [{"type": "session.created", "session": {"model": "gpt-3.5-turbo"}}]
    combined_usage_object = RealtimeAPITokenUsageProcessor.collect_and_combine_usage_from_realtime_stream_results(
        results=results,
    )
    cost = handle_realtime_stream_cost_calculation(
        results=results,
        combined_usage_object=combined_usage_object,
        custom_llm_provider="openai",
        litellm_model_name="gpt-3.5-turbo",
    )
    assert cost == 0.0  # No usage, no cost


def test_custom_pricing_with_router_model_id():
    from litellm import Router

    router = Router(
        model_list=[
            {
                "model_name": "prod/claude-3-5-sonnet-20240620",
                "litellm_params": {
                    "model": "anthropic/claude-3-5-sonnet-20240620",
                    "api_key": "test_api_key",
                },
                "model_info": {
                    "id": "my-unique-model-id",
                    "input_cost_per_token": 0.000006,
                    "output_cost_per_token": 0.00003,
                    "cache_creation_input_token_cost": 0.0000075,
                    "cache_read_input_token_cost": 0.0000006,
                },
            },
            {
                "model_name": "claude-3-5-sonnet-20240620",
                "litellm_params": {
                    "model": "anthropic/claude-3-5-sonnet-20240620",
                    "api_key": "test_api_key",
                },
                "model_info": {
                    "input_cost_per_token": 100,
                    "output_cost_per_token": 200,
                },
            },
        ]
    )

    result = router.completion(
        model="claude-3-5-sonnet-20240620",
        messages=[{"role": "user", "content": "Hello, world!"}],
        mock_response=True,
    )

    result_2 = router.completion(
        model="prod/claude-3-5-sonnet-20240620",
        messages=[{"role": "user", "content": "Hello, world!"}],
        mock_response=True,
    )

    assert (
        result._hidden_params["response_cost"]
        > result_2._hidden_params["response_cost"]
    )

    model_info = router.get_deployment_model_info(
        model_id="my-unique-model-id", model_name="anthropic/claude-3-5-sonnet-20240620"
    )
    assert model_info is not None
    assert model_info["input_cost_per_token"] == 0.000006
    assert model_info["output_cost_per_token"] == 0.00003
    assert model_info["cache_creation_input_token_cost"] == 0.0000075
    assert model_info["cache_read_input_token_cost"] == 0.0000006


def test_azure_realtime_cost_calculator():
    from litellm import get_model_info

    os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
    litellm.model_cost = litellm.get_model_cost_map(url="")

    cost = handle_realtime_stream_cost_calculation(
        results=[
            {
                "type": "session.created",
                "session": {"model": "gpt-4o-realtime-preview-2024-12-17"},
            },
        ],
        combined_usage_object=Usage(
            prompt_tokens=100,
            completion_tokens=100,
            prompt_tokens_details=PromptTokensDetailsWrapper(
                text_tokens=10, audio_tokens=90
            ),
        ),
        custom_llm_provider="azure",
        litellm_model_name="my-custom-azure-deployment",
    )

    assert cost > 0


def test_default_image_cost_calculator(monkeypatch):
    from litellm.cost_calculator import default_image_cost_calculator

    temp_object = {
        "litellm_provider": "azure",
        "input_cost_per_pixel": 10,
    }

    monkeypatch.setattr(
        litellm,
        "model_cost",
        {
            "azure/bf9001cd7209f5734ecb4ab937a5a0e2ba5f119708bd68f184db362930f9dc7b": temp_object
        },
    )

    args = {
        "model": "azure/bf9001cd7209f5734ecb4ab937a5a0e2ba5f119708bd68f184db362930f9dc7b",
        "custom_llm_provider": "azure",
        "quality": "standard",
        "n": 1,
        "size": "1024-x-1024",
        "optional_params": {},
    }
    cost = default_image_cost_calculator(**args)
    assert cost == 10485760