Spaces:
Configuration error
Configuration error
import base64 | |
import datetime | |
from typing import Dict, List, Optional, Union | |
import httpx | |
import litellm | |
from litellm.constants import DEFAULT_MAX_RECURSE_DEPTH | |
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo | |
from litellm.llms.base_llm.chat.transformation import BaseLLMException | |
from litellm.secret_managers.main import get_secret_str | |
from litellm.types.llms.openai import AllMessageValues | |
class GeminiError(BaseLLMException): | |
pass | |
class GeminiModelInfo(BaseLLMModelInfo): | |
def validate_environment( | |
self, | |
headers: dict, | |
model: str, | |
messages: List[AllMessageValues], | |
optional_params: dict, | |
litellm_params: dict, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
) -> dict: | |
"""Google AI Studio sends api key in query params""" | |
return headers | |
def api_version(self) -> str: | |
return "v1beta" | |
def get_api_base(api_base: Optional[str] = None) -> Optional[str]: | |
return ( | |
api_base | |
or get_secret_str("GEMINI_API_BASE") | |
or "https://generativelanguage.googleapis.com" | |
) | |
def get_api_key(api_key: Optional[str] = None) -> Optional[str]: | |
return api_key or (get_secret_str("GEMINI_API_KEY")) | |
def get_base_model(model: str) -> Optional[str]: | |
return model.replace("gemini/", "") | |
def get_models( | |
self, api_key: Optional[str] = None, api_base: Optional[str] = None | |
) -> List[str]: | |
api_base = GeminiModelInfo.get_api_base(api_base) | |
api_key = GeminiModelInfo.get_api_key(api_key) | |
endpoint = f"/{self.api_version}/models" | |
if api_base is None or api_key is None: | |
raise ValueError( | |
"GEMINI_API_BASE or GEMINI_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint." | |
) | |
response = litellm.module_level_client.get( | |
url=f"{api_base}{endpoint}?key={api_key}", | |
) | |
if response.status_code != 200: | |
raise ValueError( | |
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}" | |
) | |
models = response.json()["models"] | |
litellm_model_names = [] | |
for model in models: | |
stripped_model_name = model["name"].strip("models/") | |
litellm_model_name = "gemini/" + stripped_model_name | |
litellm_model_names.append(litellm_model_name) | |
return litellm_model_names | |
def get_error_class( | |
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] | |
) -> BaseLLMException: | |
return GeminiError( | |
status_code=status_code, message=error_message, headers=headers | |
) | |
def encode_unserializable_types( | |
data: Dict[str, object], depth: int = 0 | |
) -> Dict[str, object]: | |
"""Converts unserializable types in dict to json.dumps() compatible types. | |
This function is called in models.py after calling convert_to_dict(). The | |
convert_to_dict() can convert pydantic object to dict. However, the input to | |
convert_to_dict() is dict mixed of pydantic object and nested dict(the output | |
of converters). So they may be bytes in the dict and they are out of | |
`ser_json_bytes` control in model_dump(mode='json') called in | |
`convert_to_dict`, as well as datetime deserialization in Pydantic json mode. | |
Returns: | |
A dictionary with json.dumps() incompatible type (e.g. bytes datetime) | |
to compatible type (e.g. base64 encoded string, isoformat date string). | |
""" | |
if depth > DEFAULT_MAX_RECURSE_DEPTH: | |
return data | |
processed_data: dict[str, object] = {} | |
if not isinstance(data, dict): | |
return data | |
for key, value in data.items(): | |
if isinstance(value, bytes): | |
processed_data[key] = base64.urlsafe_b64encode(value).decode("ascii") | |
elif isinstance(value, datetime.datetime): | |
processed_data[key] = value.isoformat() | |
elif isinstance(value, dict): | |
processed_data[key] = encode_unserializable_types(value, depth + 1) | |
elif isinstance(value, list): | |
if all(isinstance(v, bytes) for v in value): | |
processed_data[key] = [ | |
base64.urlsafe_b64encode(v).decode("ascii") for v in value | |
] | |
if all(isinstance(v, datetime.datetime) for v in value): | |
processed_data[key] = [v.isoformat() for v in value] | |
else: | |
processed_data[key] = [ | |
encode_unserializable_types(v, depth + 1) for v in value | |
] | |
else: | |
processed_data[key] = value | |
return processed_data | |