test3 / litellm /llms /gemini /common_utils.py
DesertWolf's picture
Upload folder using huggingface_hub
447ebeb verified
import base64
import datetime
from typing import Dict, List, Optional, Union
import httpx
import litellm
from litellm.constants import DEFAULT_MAX_RECURSE_DEPTH
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllMessageValues
class GeminiError(BaseLLMException):
pass
class GeminiModelInfo(BaseLLMModelInfo):
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
"""Google AI Studio sends api key in query params"""
return headers
@property
def api_version(self) -> str:
return "v1beta"
@staticmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
return (
api_base
or get_secret_str("GEMINI_API_BASE")
or "https://generativelanguage.googleapis.com"
)
@staticmethod
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
return api_key or (get_secret_str("GEMINI_API_KEY"))
@staticmethod
def get_base_model(model: str) -> Optional[str]:
return model.replace("gemini/", "")
def get_models(
self, api_key: Optional[str] = None, api_base: Optional[str] = None
) -> List[str]:
api_base = GeminiModelInfo.get_api_base(api_base)
api_key = GeminiModelInfo.get_api_key(api_key)
endpoint = f"/{self.api_version}/models"
if api_base is None or api_key is None:
raise ValueError(
"GEMINI_API_BASE or GEMINI_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint."
)
response = litellm.module_level_client.get(
url=f"{api_base}{endpoint}?key={api_key}",
)
if response.status_code != 200:
raise ValueError(
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}"
)
models = response.json()["models"]
litellm_model_names = []
for model in models:
stripped_model_name = model["name"].strip("models/")
litellm_model_name = "gemini/" + stripped_model_name
litellm_model_names.append(litellm_model_name)
return litellm_model_names
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return GeminiError(
status_code=status_code, message=error_message, headers=headers
)
def encode_unserializable_types(
data: Dict[str, object], depth: int = 0
) -> Dict[str, object]:
"""Converts unserializable types in dict to json.dumps() compatible types.
This function is called in models.py after calling convert_to_dict(). The
convert_to_dict() can convert pydantic object to dict. However, the input to
convert_to_dict() is dict mixed of pydantic object and nested dict(the output
of converters). So they may be bytes in the dict and they are out of
`ser_json_bytes` control in model_dump(mode='json') called in
`convert_to_dict`, as well as datetime deserialization in Pydantic json mode.
Returns:
A dictionary with json.dumps() incompatible type (e.g. bytes datetime)
to compatible type (e.g. base64 encoded string, isoformat date string).
"""
if depth > DEFAULT_MAX_RECURSE_DEPTH:
return data
processed_data: dict[str, object] = {}
if not isinstance(data, dict):
return data
for key, value in data.items():
if isinstance(value, bytes):
processed_data[key] = base64.urlsafe_b64encode(value).decode("ascii")
elif isinstance(value, datetime.datetime):
processed_data[key] = value.isoformat()
elif isinstance(value, dict):
processed_data[key] = encode_unserializable_types(value, depth + 1)
elif isinstance(value, list):
if all(isinstance(v, bytes) for v in value):
processed_data[key] = [
base64.urlsafe_b64encode(v).decode("ascii") for v in value
]
if all(isinstance(v, datetime.datetime) for v in value):
processed_data[key] = [v.isoformat() for v in value]
else:
processed_data[key] = [
encode_unserializable_types(v, depth + 1) for v in value
]
else:
processed_data[key] = value
return processed_data