Spaces:
Configuration error
Configuration error
###################################################################### | |
# /v1/batches Endpoints | |
###################################################################### | |
import asyncio | |
from typing import Dict, Optional, cast | |
from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response | |
import litellm | |
from litellm._logging import verbose_proxy_logger | |
from litellm.batches.main import CancelBatchRequest, RetrieveBatchRequest | |
from litellm.proxy._types import * | |
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth | |
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing | |
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body | |
from litellm.proxy.common_utils.openai_endpoint_utils import ( | |
get_custom_llm_provider_from_request_body, | |
) | |
from litellm.proxy.openai_files_endpoints.common_utils import ( | |
_is_base64_encoded_unified_file_id, | |
get_models_from_unified_file_id, | |
) | |
from litellm.proxy.utils import handle_exception_on_proxy, is_known_model | |
from litellm.types.llms.openai import LiteLLMBatchCreateRequest | |
router = APIRouter() | |
async def create_batch( | |
request: Request, | |
fastapi_response: Response, | |
provider: Optional[str] = None, | |
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
): | |
""" | |
Create large batches of API requests for asynchronous processing. | |
This is the equivalent of POST https://api.openai.com/v1/batch | |
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch | |
Example Curl | |
``` | |
curl http://localhost:4000/v1/batches \ | |
-H "Authorization: Bearer sk-1234" \ | |
-H "Content-Type: application/json" \ | |
-d '{ | |
"input_file_id": "file-abc123", | |
"endpoint": "/v1/chat/completions", | |
"completion_window": "24h" | |
}' | |
``` | |
""" | |
from litellm.proxy.proxy_server import ( | |
general_settings, | |
llm_router, | |
proxy_config, | |
proxy_logging_obj, | |
version, | |
) | |
data: Dict = {} | |
try: | |
data = await _read_request_body(request=request) | |
verbose_proxy_logger.debug( | |
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), | |
) | |
base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data) | |
( | |
data, | |
litellm_logging_obj, | |
) = await base_llm_response_processor.common_processing_pre_call_logic( | |
request=request, | |
general_settings=general_settings, | |
user_api_key_dict=user_api_key_dict, | |
version=version, | |
proxy_logging_obj=proxy_logging_obj, | |
proxy_config=proxy_config, | |
route_type="acreate_batch", | |
) | |
## check if model is a loadbalanced model | |
router_model: Optional[str] = None | |
is_router_model = False | |
if litellm.enable_loadbalancing_on_batch_endpoints is True: | |
router_model = data.get("model", None) | |
is_router_model = is_known_model(model=router_model, llm_router=llm_router) | |
custom_llm_provider = ( | |
provider or data.pop("custom_llm_provider", None) or "openai" | |
) | |
_create_batch_data = LiteLLMBatchCreateRequest(**data) | |
input_file_id = _create_batch_data.get("input_file_id", None) | |
unified_file_id: Union[str, Literal[False]] = False | |
if input_file_id: | |
unified_file_id = _is_base64_encoded_unified_file_id(input_file_id) | |
if ( | |
litellm.enable_loadbalancing_on_batch_endpoints is True | |
and is_router_model | |
and router_model is not None | |
): | |
if llm_router is None: | |
raise HTTPException( | |
status_code=500, | |
detail={ | |
"error": "LLM Router not initialized. Ensure models added to proxy." | |
}, | |
) | |
response = await llm_router.acreate_batch(**_create_batch_data) # type: ignore | |
elif ( | |
unified_file_id and input_file_id | |
): # litellm_proxy:application/octet-stream;unified_id,c4843482-b176-4901-8292-7523fd0f2c6e;target_model_names,gpt-4o-mini | |
target_model_names = get_models_from_unified_file_id(unified_file_id) | |
## EXPECTS 1 MODEL | |
if len(target_model_names) != 1: | |
raise HTTPException( | |
status_code=400, | |
detail={ | |
"error": "Expected 1 model, got {}".format( | |
len(target_model_names) | |
) | |
}, | |
) | |
model = target_model_names[0] | |
_create_batch_data["model"] = model | |
if llm_router is None: | |
raise HTTPException( | |
status_code=500, | |
detail={ | |
"error": "LLM Router not initialized. Ensure models added to proxy." | |
}, | |
) | |
response = await llm_router.acreate_batch(**_create_batch_data) | |
response.input_file_id = input_file_id | |
response._hidden_params["unified_file_id"] = unified_file_id | |
else: | |
response = await litellm.acreate_batch( | |
custom_llm_provider=custom_llm_provider, **_create_batch_data # type: ignore | |
) | |
### CALL HOOKS ### - modify outgoing data | |
response = await proxy_logging_obj.post_call_success_hook( | |
data=data, user_api_key_dict=user_api_key_dict, response=response | |
) | |
### ALERTING ### | |
asyncio.create_task( | |
proxy_logging_obj.update_request_status( | |
litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
) | |
) | |
### RESPONSE HEADERS ### | |
hidden_params = getattr(response, "_hidden_params", {}) or {} | |
model_id = hidden_params.get("model_id", None) or "" | |
cache_key = hidden_params.get("cache_key", None) or "" | |
api_base = hidden_params.get("api_base", None) or "" | |
fastapi_response.headers.update( | |
ProxyBaseLLMRequestProcessing.get_custom_headers( | |
user_api_key_dict=user_api_key_dict, | |
model_id=model_id, | |
cache_key=cache_key, | |
api_base=api_base, | |
version=version, | |
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
request_data=data, | |
) | |
) | |
return response | |
except Exception as e: | |
await proxy_logging_obj.post_call_failure_hook( | |
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
) | |
verbose_proxy_logger.exception( | |
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( | |
str(e) | |
) | |
) | |
raise handle_exception_on_proxy(e) | |
async def retrieve_batch( | |
request: Request, | |
fastapi_response: Response, | |
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
provider: Optional[str] = None, | |
batch_id: str = Path( | |
title="Batch ID to retrieve", description="The ID of the batch to retrieve" | |
), | |
): | |
""" | |
Retrieves a batch. | |
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id} | |
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve | |
Example Curl | |
``` | |
curl http://localhost:4000/v1/batches/batch_abc123 \ | |
-H "Authorization: Bearer sk-1234" \ | |
-H "Content-Type: application/json" \ | |
``` | |
""" | |
from litellm.proxy.proxy_server import ( | |
general_settings, | |
llm_router, | |
proxy_config, | |
proxy_logging_obj, | |
version, | |
) | |
data: Dict = {} | |
try: | |
## check if model is a loadbalanced model | |
_retrieve_batch_request = RetrieveBatchRequest( | |
batch_id=batch_id, | |
) | |
data = cast(dict, _retrieve_batch_request) | |
unified_batch_id = _is_base64_encoded_unified_file_id(batch_id) | |
base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data) | |
( | |
data, | |
litellm_logging_obj, | |
) = await base_llm_response_processor.common_processing_pre_call_logic( | |
request=request, | |
general_settings=general_settings, | |
user_api_key_dict=user_api_key_dict, | |
version=version, | |
proxy_logging_obj=proxy_logging_obj, | |
proxy_config=proxy_config, | |
route_type="aretrieve_batch", | |
) | |
if litellm.enable_loadbalancing_on_batch_endpoints is True or unified_batch_id: | |
if llm_router is None: | |
raise HTTPException( | |
status_code=500, | |
detail={ | |
"error": "LLM Router not initialized. Ensure models added to proxy." | |
}, | |
) | |
response = await llm_router.aretrieve_batch(**data) # type: ignore | |
response._hidden_params["unified_batch_id"] = unified_batch_id | |
else: | |
custom_llm_provider = ( | |
provider | |
or await get_custom_llm_provider_from_request_body(request=request) | |
or "openai" | |
) | |
response = await litellm.aretrieve_batch( | |
custom_llm_provider=custom_llm_provider, **data # type: ignore | |
) | |
### CALL HOOKS ### - modify outgoing data | |
response = await proxy_logging_obj.post_call_success_hook( | |
data=data, user_api_key_dict=user_api_key_dict, response=response | |
) | |
### ALERTING ### | |
asyncio.create_task( | |
proxy_logging_obj.update_request_status( | |
litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
) | |
) | |
### RESPONSE HEADERS ### | |
hidden_params = getattr(response, "_hidden_params", {}) or {} | |
model_id = hidden_params.get("model_id", None) or "" | |
cache_key = hidden_params.get("cache_key", None) or "" | |
api_base = hidden_params.get("api_base", None) or "" | |
fastapi_response.headers.update( | |
ProxyBaseLLMRequestProcessing.get_custom_headers( | |
user_api_key_dict=user_api_key_dict, | |
model_id=model_id, | |
cache_key=cache_key, | |
api_base=api_base, | |
version=version, | |
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
request_data=data, | |
) | |
) | |
return response | |
except Exception as e: | |
await proxy_logging_obj.post_call_failure_hook( | |
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
) | |
verbose_proxy_logger.exception( | |
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( | |
str(e) | |
) | |
) | |
raise handle_exception_on_proxy(e) | |
async def list_batches( | |
request: Request, | |
fastapi_response: Response, | |
provider: Optional[str] = None, | |
limit: Optional[int] = None, | |
after: Optional[str] = None, | |
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
): | |
""" | |
Lists | |
This is the equivalent of GET https://api.openai.com/v1/batches/ | |
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list | |
Example Curl | |
``` | |
curl http://localhost:4000/v1/batches?limit=2 \ | |
-H "Authorization: Bearer sk-1234" \ | |
-H "Content-Type: application/json" \ | |
``` | |
""" | |
from litellm.proxy.proxy_server import proxy_logging_obj, version | |
verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit)) | |
try: | |
custom_llm_provider = ( | |
provider | |
or await get_custom_llm_provider_from_request_body(request=request) | |
or "openai" | |
) | |
response = await litellm.alist_batches( | |
custom_llm_provider=custom_llm_provider, # type: ignore | |
after=after, | |
limit=limit, | |
) | |
### RESPONSE HEADERS ### | |
hidden_params = getattr(response, "_hidden_params", {}) or {} | |
model_id = hidden_params.get("model_id", None) or "" | |
cache_key = hidden_params.get("cache_key", None) or "" | |
api_base = hidden_params.get("api_base", None) or "" | |
fastapi_response.headers.update( | |
ProxyBaseLLMRequestProcessing.get_custom_headers( | |
user_api_key_dict=user_api_key_dict, | |
model_id=model_id, | |
cache_key=cache_key, | |
api_base=api_base, | |
version=version, | |
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
) | |
) | |
return response | |
except Exception as e: | |
await proxy_logging_obj.post_call_failure_hook( | |
user_api_key_dict=user_api_key_dict, | |
original_exception=e, | |
request_data={"after": after, "limit": limit}, | |
) | |
verbose_proxy_logger.error( | |
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( | |
str(e) | |
) | |
) | |
raise handle_exception_on_proxy(e) | |
async def cancel_batch( | |
request: Request, | |
batch_id: str, | |
fastapi_response: Response, | |
provider: Optional[str] = None, | |
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), | |
): | |
""" | |
Cancel a batch. | |
This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel | |
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel | |
Example Curl | |
``` | |
curl http://localhost:4000/v1/batches/batch_abc123/cancel \ | |
-H "Authorization: Bearer sk-1234" \ | |
-H "Content-Type: application/json" \ | |
-X POST | |
``` | |
""" | |
from litellm.proxy.proxy_server import ( | |
add_litellm_data_to_request, | |
general_settings, | |
proxy_config, | |
proxy_logging_obj, | |
version, | |
) | |
data: Dict = {} | |
try: | |
data = await _read_request_body(request=request) | |
verbose_proxy_logger.debug( | |
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), | |
) | |
# Include original request and headers in the data | |
data = await add_litellm_data_to_request( | |
data=data, | |
request=request, | |
general_settings=general_settings, | |
user_api_key_dict=user_api_key_dict, | |
version=version, | |
proxy_config=proxy_config, | |
) | |
custom_llm_provider = ( | |
provider or data.pop("custom_llm_provider", None) or "openai" | |
) | |
_cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data) | |
response = await litellm.acancel_batch( | |
custom_llm_provider=custom_llm_provider, # type: ignore | |
**_cancel_batch_data | |
) | |
### ALERTING ### | |
asyncio.create_task( | |
proxy_logging_obj.update_request_status( | |
litellm_call_id=data.get("litellm_call_id", ""), status="success" | |
) | |
) | |
### RESPONSE HEADERS ### | |
hidden_params = getattr(response, "_hidden_params", {}) or {} | |
model_id = hidden_params.get("model_id", None) or "" | |
cache_key = hidden_params.get("cache_key", None) or "" | |
api_base = hidden_params.get("api_base", None) or "" | |
fastapi_response.headers.update( | |
ProxyBaseLLMRequestProcessing.get_custom_headers( | |
user_api_key_dict=user_api_key_dict, | |
model_id=model_id, | |
cache_key=cache_key, | |
api_base=api_base, | |
version=version, | |
model_region=getattr(user_api_key_dict, "allowed_model_region", ""), | |
request_data=data, | |
) | |
) | |
return response | |
except Exception as e: | |
await proxy_logging_obj.post_call_failure_hook( | |
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data | |
) | |
verbose_proxy_logger.exception( | |
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( | |
str(e) | |
) | |
) | |
raise handle_exception_on_proxy(e) | |
###################################################################### | |
# END OF /v1/batches Endpoints Implementation | |
###################################################################### | |