test3 / litellm /router_utils /prompt_caching_cache.py
DesertWolf's picture
Upload folder using huggingface_hub
447ebeb verified
"""
Wrapper around router cache. Meant to store model id when prompt caching supported prompt is called.
"""
import hashlib
import json
from typing import TYPE_CHECKING, Any, List, Optional, TypedDict, Union
from litellm.caching.caching import DualCache
from litellm.caching.in_memory_cache import InMemoryCache
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolParam
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
from litellm.router import Router
litellm_router = Router
Span = Union[_Span, Any]
else:
Span = Any
litellm_router = Any
class PromptCachingCacheValue(TypedDict):
model_id: str
class PromptCachingCache:
def __init__(self, cache: DualCache):
self.cache = cache
self.in_memory_cache = InMemoryCache()
@staticmethod
def serialize_object(obj: Any) -> Any:
"""Helper function to serialize Pydantic objects, dictionaries, or fallback to string."""
if hasattr(obj, "dict"):
# If the object is a Pydantic model, use its `dict()` method
return obj.dict()
elif isinstance(obj, dict):
# If the object is a dictionary, serialize it with sorted keys
return json.dumps(
obj, sort_keys=True, separators=(",", ":")
) # Standardize serialization
elif isinstance(obj, list):
# Serialize lists by ensuring each element is handled properly
return [PromptCachingCache.serialize_object(item) for item in obj]
elif isinstance(obj, (int, float, bool)):
return obj # Keep primitive types as-is
return str(obj)
@staticmethod
def get_prompt_caching_cache_key(
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[str]:
if messages is None and tools is None:
return None
# Use serialize_object for consistent and stable serialization
data_to_hash = {}
if messages is not None:
serialized_messages = PromptCachingCache.serialize_object(messages)
data_to_hash["messages"] = serialized_messages
if tools is not None:
serialized_tools = PromptCachingCache.serialize_object(tools)
data_to_hash["tools"] = serialized_tools
# Combine serialized data into a single string
data_to_hash_str = json.dumps(
data_to_hash,
sort_keys=True,
separators=(",", ":"),
)
# Create a hash of the serialized data for a stable cache key
hashed_data = hashlib.sha256(data_to_hash_str.encode()).hexdigest()
return f"deployment:{hashed_data}:prompt_caching"
def add_model_id(
self,
model_id: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> None:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
self.cache.set_cache(
cache_key, PromptCachingCacheValue(model_id=model_id), ttl=300
)
return None
async def async_add_model_id(
self,
model_id: str,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> None:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
await self.cache.async_set_cache(
cache_key,
PromptCachingCacheValue(model_id=model_id),
ttl=300, # store for 5 minutes
)
return None
async def async_get_model_id(
self,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[PromptCachingCacheValue]:
"""
if messages is not none
- check full messages
- check messages[:-1]
- check messages[:-2]
- check messages[:-3]
use self.cache.async_batch_get_cache(keys=potential_cache_keys])
"""
if messages is None and tools is None:
return None
# Generate potential cache keys by slicing messages
potential_cache_keys = []
if messages is not None:
full_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
messages, tools
)
potential_cache_keys.append(full_cache_key)
# Check progressively shorter message slices
for i in range(1, min(4, len(messages))):
partial_messages = messages[:-i]
partial_cache_key = PromptCachingCache.get_prompt_caching_cache_key(
partial_messages, tools
)
potential_cache_keys.append(partial_cache_key)
# Perform batch cache lookup
cache_results = await self.cache.async_batch_get_cache(
keys=potential_cache_keys
)
if cache_results is None:
return None
# Return the first non-None cache result
for result in cache_results:
if result is not None:
return result
return None
def get_model_id(
self,
messages: Optional[List[AllMessageValues]],
tools: Optional[List[ChatCompletionToolParam]],
) -> Optional[PromptCachingCacheValue]:
if messages is None and tools is None:
return None
cache_key = PromptCachingCache.get_prompt_caching_cache_key(messages, tools)
return self.cache.get_cache(cache_key)