Spaces:
Configuration error
Configuration error
import os | |
import sys | |
import traceback | |
from dotenv import load_dotenv | |
load_dotenv() | |
import io | |
import os | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
import json | |
import pytest | |
import litellm | |
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding | |
from unittest.mock import AsyncMock, patch | |
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding | |
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler | |
litellm.num_retries = 3 | |
async def test_chat_completion_cohere_citations(stream): | |
try: | |
litellm.set_verbose = True | |
messages = [ | |
{ | |
"role": "user", | |
"content": "Which penguins are the tallest?", | |
}, | |
] | |
response = await litellm.acompletion( | |
model="cohere_chat/command-r", | |
messages=messages, | |
documents=[ | |
{"title": "Tall penguins", "text": "Emperor penguins are the tallest."}, | |
{ | |
"title": "Penguin habitats", | |
"text": "Emperor penguins only live in Antarctica.", | |
}, | |
], | |
stream=stream, | |
) | |
if stream: | |
citations_chunk = False | |
async for chunk in response: | |
print("received chunk", chunk) | |
if "citations" in chunk: | |
citations_chunk = True | |
break | |
assert citations_chunk | |
else: | |
assert response.citations is not None | |
except litellm.ServiceUnavailableError: | |
pass | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
def test_completion_cohere_command_r_plus_function_call(): | |
litellm.set_verbose = True | |
tools = [ | |
{ | |
"type": "function", | |
"function": { | |
"name": "get_current_weather", | |
"description": "Get the current weather in a given location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, CA", | |
}, | |
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, | |
}, | |
"required": ["location"], | |
}, | |
}, | |
} | |
] | |
messages = [ | |
{ | |
"role": "user", | |
"content": "What's the weather like in Boston today in Fahrenheit?", | |
} | |
] | |
try: | |
# test without max tokens | |
response = completion( | |
model="command-r-plus", | |
messages=messages, | |
tools=tools, | |
tool_choice="auto", | |
) | |
# Add any assertions, here to check response args | |
print(response) | |
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) | |
assert isinstance( | |
response.choices[0].message.tool_calls[0].function.arguments, str | |
) | |
messages.append( | |
response.choices[0].message.model_dump() | |
) # Add assistant tool invokes | |
tool_result = ( | |
'{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}' | |
) | |
# Add user submitted tool results in the OpenAI format | |
messages.append( | |
{ | |
"tool_call_id": response.choices[0].message.tool_calls[0].id, | |
"role": "tool", | |
"name": response.choices[0].message.tool_calls[0].function.name, | |
"content": tool_result, | |
} | |
) | |
# In the second response, Cohere should deduce answer from tool results | |
second_response = completion( | |
model="command-r-plus", | |
messages=messages, | |
tools=tools, | |
tool_choice="auto", | |
force_single_step=True, | |
) | |
print(second_response) | |
except litellm.Timeout: | |
pass | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
# @pytest.mark.skip(reason="flaky test, times out frequently") | |
def test_completion_cohere(): | |
try: | |
# litellm.set_verbose=True | |
messages = [ | |
{"role": "system", "content": "You're a good bot"}, | |
{"role": "assistant", "content": [{"text": "2", "type": "text"}]}, | |
{"role": "assistant", "content": [{"text": "3", "type": "text"}]}, | |
{ | |
"role": "user", | |
"content": "Hey", | |
}, | |
] | |
response = completion( | |
model="command-r", | |
messages=messages, | |
) | |
print(response) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
# FYI - cohere_chat looks quite unstable, even when testing locally | |
async def test_chat_completion_cohere(sync_mode): | |
try: | |
litellm.set_verbose = True | |
messages = [ | |
{"role": "system", "content": "You're a good bot"}, | |
{ | |
"role": "user", | |
"content": "Hey", | |
}, | |
] | |
if sync_mode is False: | |
response = await litellm.acompletion( | |
model="cohere_chat/command-r", | |
messages=messages, | |
max_tokens=10, | |
) | |
else: | |
response = completion( | |
model="cohere_chat/command-r", | |
messages=messages, | |
max_tokens=10, | |
) | |
print(response) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
async def test_chat_completion_cohere_stream(sync_mode): | |
try: | |
litellm.set_verbose = True | |
messages = [ | |
{"role": "system", "content": "You're a good bot"}, | |
{ | |
"role": "user", | |
"content": "Hey", | |
}, | |
] | |
if sync_mode is False: | |
response = await litellm.acompletion( | |
model="cohere_chat/command-r", | |
messages=messages, | |
max_tokens=10, | |
stream=True, | |
) | |
print("async cohere stream response", response) | |
async for chunk in response: | |
print(chunk) | |
else: | |
response = completion( | |
model="cohere_chat/command-r", | |
messages=messages, | |
max_tokens=10, | |
stream=True, | |
) | |
print(response) | |
for chunk in response: | |
print(chunk) | |
except litellm.APIConnectionError as e: | |
pass | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
async def test_cohere_request_body_with_allowed_params(): | |
""" | |
Test to validate that when allowed_openai_params is provided, the request body contains | |
the correct response_format and reasoning_effort values. | |
""" | |
# Define test parameters | |
test_response_format = {"type": "json"} | |
test_reasoning_effort = "low" | |
test_tools = [{ | |
"type": "function", | |
"function": { | |
"name": "get_current_time", | |
"description": "Get the current time in a given location.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city name, e.g. San Francisco"} | |
}, | |
"required": ["location"] | |
} | |
} | |
}] | |
client = AsyncHTTPHandler() | |
# Mock the post method | |
with patch.object(client, "post", new=AsyncMock()) as mock_post: | |
try: | |
await litellm.acompletion( | |
model="cohere/command", | |
messages=[{"content": "what llm are you", "role": "user"}], | |
allowed_openai_params=["tools", "response_format", "reasoning_effort"], | |
response_format=test_response_format, | |
reasoning_effort=test_reasoning_effort, | |
tools=test_tools, | |
client=client | |
) | |
except Exception: | |
pass # We only care about the request body validation | |
# Verify the API call was made | |
mock_post.assert_called_once() | |
# Get and parse the request body | |
request_data = json.loads(mock_post.call_args.kwargs["data"]) | |
print(f"request_data: {request_data}") | |
# Validate request contains our specified parameters | |
assert "allowed_openai_params" not in request_data | |
assert request_data["response_format"] == test_response_format | |
assert request_data["reasoning_effort"] == test_reasoning_effort | |
def test_cohere_embedding_outout_dimensions(): | |
litellm._turn_on_debug() | |
response = embedding(model="cohere/embed-v4.0", input="Hello, world!", dimensions=512) | |
print(f"response: {response}\n") | |
assert len(response.data[0]["embedding"]) == 512 | |
# Comprehensive Cohere Embed v4 tests | |
async def test_cohere_embed_v4_basic_text(sync_mode): | |
"""Test basic text embedding functionality with Cohere Embed v4.""" | |
try: | |
data = { | |
"model": "cohere/embed-v4.0", | |
"input": ["Hello world!", "This is a test sentence."], | |
"input_type": "search_document" | |
} | |
if sync_mode: | |
response = embedding(**data) | |
else: | |
response = await litellm.aembedding(**data) | |
# Validate response structure | |
assert response.model is not None | |
assert len(response.data) == 2 | |
assert response.data[0]['object'] == 'embedding' | |
assert len(response.data[0]['embedding']) > 0 | |
assert response.usage.prompt_tokens > 0 | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
async def test_cohere_embed_v4_with_dimensions(sync_mode): | |
"""Test Cohere Embed v4 with specific dimension parameter.""" | |
try: | |
data = { | |
"model": "cohere/embed-v4.0", | |
"input": ["Test with custom dimensions"], | |
"dimensions": 512, | |
"input_type": "search_query" | |
} | |
if sync_mode: | |
response = embedding(**data) | |
else: | |
response = await litellm.aembedding(**data) | |
# Validate dimension | |
assert len(response.data[0]['embedding']) == 512 | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
async def test_cohere_embed_v4_image_embedding(sync_mode): | |
"""Test Cohere Embed v4 image embedding functionality (multimodal).""" | |
try: | |
import base64 | |
# 1x1 pixel red PNG (base64 encoded) | |
test_image_data = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x02\x00\x00\x00\x90wS\xde\x00\x00\x00\tpHYs\x00\x00\x0b\x13\x00\x00\x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x00\x0cIDATx\x9cc\xf8\x00\x00\x00\x01\x00\x01\x00\x00\x00\x00' | |
test_image_b64 = base64.b64encode(test_image_data).decode('utf-8') | |
data = { | |
"model": "cohere/embed-v4.0", | |
"input": [test_image_b64], | |
"input_type": "image" | |
} | |
if sync_mode: | |
response = embedding(**data) | |
else: | |
response = await litellm.aembedding(**data) | |
# Validate response structure for image embedding | |
assert response.model is not None | |
assert len(response.data) == 1 | |
assert response.data[0]['object'] == 'embedding' | |
assert len(response.data[0]['embedding']) > 0 | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
async def test_cohere_embed_v4_input_types(input_type): | |
"""Test Cohere Embed v4 with different input types.""" | |
try: | |
response = await litellm.aembedding( | |
model="cohere/embed-v4.0", | |
input=[f"Test text for {input_type}"], | |
input_type=input_type | |
) | |
assert response.model is not None | |
assert len(response.data) == 1 | |
assert response.data[0]['object'] == 'embedding' | |
assert len(response.data[0]['embedding']) > 0 | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
def test_cohere_embed_v4_encoding_format(): | |
"""Test Cohere Embed v4 with different encoding formats.""" | |
try: | |
response = embedding( | |
model="cohere/embed-v4.0", | |
input=["Test encoding format"], | |
encoding_format="float" | |
) | |
assert response.model is not None | |
assert len(response.data) == 1 | |
assert response.data[0]['object'] == 'embedding' | |
assert len(response.data[0]['embedding']) > 0 | |
# Validate that embeddings are floats | |
assert all(isinstance(x, float) for x in response.data[0]['embedding']) | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
def test_cohere_embed_v4_error_handling(): | |
"""Test error handling for Cohere Embed v4 with invalid inputs.""" | |
try: | |
# Test with empty input - should raise an error | |
try: | |
response = embedding( | |
model="cohere/embed-v4.0", | |
input=[] # Empty input | |
) | |
pytest.fail("Should have failed with empty input") | |
except Exception: | |
pass # Expected to fail | |
# Test with None input - should raise an error | |
try: | |
response = embedding( | |
model="cohere/embed-v4.0", | |
input=None | |
) | |
pytest.fail("Should have failed with None input") | |
except Exception: | |
pass # Expected to fail | |
except Exception as e: | |
pytest.fail(f"Error in error handling test: {e}") | |
async def test_cohere_embed_v4_multiple_texts(sync_mode): | |
"""Test Cohere Embed v4 with multiple text inputs.""" | |
try: | |
texts = [ | |
"The quick brown fox jumps over the lazy dog", | |
"Machine learning is transforming the world", | |
"Python is a versatile programming language", | |
"Natural language processing enables human-computer interaction" | |
] | |
data = { | |
"model": "cohere/embed-v4.0", | |
"input": texts, | |
"input_type": "search_document" | |
} | |
if sync_mode: | |
response = embedding(**data) | |
else: | |
response = await litellm.aembedding(**data) | |
# Validate response structure | |
assert response.model is not None | |
assert len(response.data) == len(texts) | |
for i, data_item in enumerate(response.data): | |
assert data_item['object'] == 'embedding' | |
assert data_item['index'] == i | |
assert len(data_item['embedding']) > 0 | |
assert all(isinstance(x, float) for x in data_item['embedding']) | |
assert isinstance(response.usage, litellm.Usage) | |
assert response.usage.prompt_tokens > 0 | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") | |
def test_cohere_embed_v4_with_optional_params(): | |
"""Test Cohere Embed v4 with various optional parameters.""" | |
try: | |
response = embedding( | |
model="cohere/embed-v4.0", | |
input=["Test with optional parameters"], | |
input_type="search_query", | |
dimensions=256, | |
encoding_format="float" | |
) | |
# Validate response | |
assert response.model is not None | |
assert len(response.data) == 1 | |
assert response.data[0]['object'] == 'embedding' | |
assert len(response.data[0]['embedding']) == 256 # Custom dimensions | |
assert all(isinstance(x, float) for x in response.data[0]['embedding']) | |
assert isinstance(response.usage, litellm.Usage) | |
except Exception as e: | |
pytest.fail(f"Error occurred: {e}") |