Spaces:
Configuration error
Configuration error
import os | |
import sys | |
import traceback | |
import uuid | |
import pytest | |
from dotenv import load_dotenv | |
from fastapi import Request | |
from fastapi.routing import APIRoute | |
load_dotenv() | |
import io | |
import os | |
import time | |
import json | |
# this file is to test litellm/proxy | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
import litellm | |
import asyncio | |
from typing import Optional | |
from litellm.types.utils import StandardLoggingPayload, Usage, ModelInfoBase | |
from litellm.integrations.custom_logger import CustomLogger | |
class TestCustomLogger(CustomLogger): | |
def __init__(self): | |
self.recorded_usage: Optional[Usage] = None | |
self.standard_logging_payload: Optional[StandardLoggingPayload] = None | |
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): | |
standard_logging_payload = kwargs.get("standard_logging_object") | |
self.standard_logging_payload = standard_logging_payload | |
print( | |
"standard_logging_payload", | |
json.dumps(standard_logging_payload, indent=4, default=str), | |
) | |
self.recorded_usage = Usage( | |
prompt_tokens=standard_logging_payload.get("prompt_tokens"), | |
completion_tokens=standard_logging_payload.get("completion_tokens"), | |
total_tokens=standard_logging_payload.get("total_tokens"), | |
) | |
pass | |
async def test_stream_token_counting_gpt_4o(): | |
""" | |
When stream_options={"include_usage": True} logging callback tracks Usage == Usage from llm API | |
""" | |
custom_logger = TestCustomLogger() | |
litellm.logging_callback_manager.add_litellm_callback(custom_logger) | |
response = await litellm.acompletion( | |
model="gpt-4o", | |
messages=[{"role": "user", "content": "Hello, how are you?" * 100}], | |
stream=True, | |
stream_options={"include_usage": True}, | |
) | |
actual_usage = None | |
async for chunk in response: | |
if "usage" in chunk: | |
actual_usage = chunk["usage"] | |
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str)) | |
pass | |
await asyncio.sleep(2) | |
print("\n\n\n\n\n") | |
print( | |
"recorded_usage", | |
json.dumps(custom_logger.recorded_usage, indent=4, default=str), | |
) | |
print("\n\n\n\n\n") | |
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens | |
assert ( | |
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens | |
) | |
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens | |
async def test_stream_token_counting_without_include_usage(): | |
""" | |
When stream_options={"include_usage": True} is not passed, the usage tracked == usage from llm api chunk | |
by default, litellm passes `include_usage=True` for OpenAI API | |
""" | |
custom_logger = TestCustomLogger() | |
litellm.logging_callback_manager.add_litellm_callback(custom_logger) | |
response = await litellm.acompletion( | |
model="gpt-4o", | |
messages=[{"role": "user", "content": "Hello, how are you?" * 100}], | |
stream=True, | |
) | |
actual_usage = None | |
async for chunk in response: | |
if "usage" in chunk: | |
actual_usage = chunk["usage"] | |
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str)) | |
pass | |
await asyncio.sleep(2) | |
print("\n\n\n\n\n") | |
print( | |
"recorded_usage", | |
json.dumps(custom_logger.recorded_usage, indent=4, default=str), | |
) | |
print("\n\n\n\n\n") | |
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens | |
assert ( | |
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens | |
) | |
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens | |
async def test_stream_token_counting_with_redaction(): | |
""" | |
When litellm.turn_off_message_logging=True is used, the usage tracked == usage from llm api chunk | |
""" | |
litellm.turn_off_message_logging = True | |
custom_logger = TestCustomLogger() | |
litellm.logging_callback_manager.add_litellm_callback(custom_logger) | |
response = await litellm.acompletion( | |
model="gpt-4o", | |
messages=[{"role": "user", "content": "Hello, how are you?" * 100}], | |
stream=True, | |
) | |
actual_usage = None | |
async for chunk in response: | |
if "usage" in chunk: | |
actual_usage = chunk["usage"] | |
print("chunk.usage", json.dumps(chunk["usage"], indent=4, default=str)) | |
pass | |
await asyncio.sleep(2) | |
print("\n\n\n\n\n") | |
print( | |
"recorded_usage", | |
json.dumps(custom_logger.recorded_usage, indent=4, default=str), | |
) | |
print("\n\n\n\n\n") | |
assert actual_usage.prompt_tokens == custom_logger.recorded_usage.prompt_tokens | |
assert ( | |
actual_usage.completion_tokens == custom_logger.recorded_usage.completion_tokens | |
) | |
assert actual_usage.total_tokens == custom_logger.recorded_usage.total_tokens | |
async def test_stream_token_counting_anthropic_with_include_usage(): | |
""" """ | |
from anthropic import Anthropic | |
anthropic_client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY")) | |
litellm._turn_on_debug() | |
custom_logger = TestCustomLogger() | |
litellm.logging_callback_manager.add_litellm_callback(custom_logger) | |
input_text = "Respond in just 1 word. Say ping" | |
response = await litellm.acompletion( | |
model="claude-3-5-sonnet-20240620", | |
messages=[{"role": "user", "content": input_text}], | |
max_tokens=4096, | |
stream=True, | |
) | |
actual_usage = None | |
output_text = "" | |
async for chunk in response: | |
output_text += chunk["choices"][0]["delta"]["content"] or "" | |
pass | |
await asyncio.sleep(1) | |
print("\n\n\n\n\n") | |
print( | |
"recorded_usage", | |
json.dumps(custom_logger.recorded_usage, indent=4, default=str), | |
) | |
print("\n\n\n\n\n") | |
# print making the same request with anthropic client | |
anthropic_response = anthropic_client.messages.create( | |
model="claude-3-5-sonnet-20240620", | |
max_tokens=4096, | |
messages=[{"role": "user", "content": input_text}], | |
stream=True, | |
) | |
usage = None | |
all_anthropic_usage_chunks = [] | |
for chunk in anthropic_response: | |
print("chunk", json.dumps(chunk, indent=4, default=str)) | |
if hasattr(chunk, "message"): | |
if chunk.message.usage: | |
print( | |
"USAGE BLOCK", | |
json.dumps(chunk.message.usage, indent=4, default=str), | |
) | |
all_anthropic_usage_chunks.append(chunk.message.usage) | |
elif hasattr(chunk, "usage"): | |
print("USAGE BLOCK", json.dumps(chunk.usage, indent=4, default=str)) | |
all_anthropic_usage_chunks.append(chunk.usage) | |
print( | |
"all_anthropic_usage_chunks", | |
json.dumps(all_anthropic_usage_chunks, indent=4, default=str), | |
) | |
input_tokens_anthropic_api = sum( | |
[getattr(usage, "input_tokens", 0) or 0 for usage in all_anthropic_usage_chunks] | |
) | |
output_tokens_anthropic_api = sum( | |
[getattr(usage, "output_tokens", 0) or 0 for usage in all_anthropic_usage_chunks] | |
) | |
print("input_tokens_anthropic_api", input_tokens_anthropic_api) | |
print("output_tokens_anthropic_api", output_tokens_anthropic_api) | |
print("input_tokens_litellm", custom_logger.recorded_usage.prompt_tokens) | |
print("output_tokens_litellm", custom_logger.recorded_usage.completion_tokens) | |
## Assert Accuracy of token counting | |
# input tokens should be exactly the same | |
assert input_tokens_anthropic_api == custom_logger.recorded_usage.prompt_tokens | |
# output tokens can have at max abs diff of 10. We can't guarantee the response from two api calls will be exactly the same | |
assert ( | |
abs( | |
output_tokens_anthropic_api - custom_logger.recorded_usage.completion_tokens | |
) | |
<= 10 | |
) | |