Spaces:
Configuration error
Configuration error
""" | |
This test ensures that the proxy can passthrough anthropic requests | |
""" | |
import pytest | |
import anthropic | |
import aiohttp | |
import asyncio | |
import json | |
async def test_anthropic_basic_completion_with_headers(): | |
print("making basic completion request to anthropic passthrough with aiohttp") | |
headers = { | |
"Authorization": f"Bearer sk-1234", | |
"Content-Type": "application/json", | |
"Anthropic-Version": "2023-06-01", | |
} | |
payload = { | |
"model": "claude-3-5-sonnet-20241022", | |
"max_tokens": 10, | |
"messages": [{"role": "user", "content": "Say 'hello test' and nothing else"}], | |
"litellm_metadata": { | |
"tags": ["test-tag-1", "test-tag-2"], | |
}, | |
} | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
"http://0.0.0.0:4000/anthropic/v1/messages", json=payload, headers=headers | |
) as response: | |
response_text = await response.text() | |
print(f"Response text: {response_text}") | |
response_json = await response.json() | |
response_headers = response.headers | |
print( | |
"non-streaming response", | |
json.dumps(response_json, indent=4, default=str), | |
) | |
reported_usage = response_json.get("usage", None) | |
anthropic_api_input_tokens = reported_usage.get("input_tokens", None) | |
anthropic_api_output_tokens = reported_usage.get("output_tokens", None) | |
litellm_call_id = response_headers.get("x-litellm-call-id") | |
print(f"LiteLLM Call ID: {litellm_call_id}") | |
# Wait for spend to be logged | |
await asyncio.sleep(15) | |
# Check spend logs for this specific request | |
async with session.get( | |
f"http://0.0.0.0:4000/spend/logs?request_id={litellm_call_id}", | |
headers={"Authorization": "Bearer sk-1234"}, | |
) as spend_response: | |
print("text spend response") | |
print(f"Spend response: {spend_response}") | |
spend_data = await spend_response.json() | |
print(f"Spend data: {spend_data}") | |
assert spend_data is not None, "Should have spend data for the request" | |
log_entry = spend_data[ | |
0 | |
] # Get the first (and should be only) log entry | |
# Basic existence checks | |
assert spend_data is not None, "Should have spend data for the request" | |
assert isinstance(log_entry, dict), "Log entry should be a dictionary" | |
# Request metadata assertions | |
assert ( | |
log_entry["request_id"] == litellm_call_id | |
), "Request ID should match" | |
assert ( | |
log_entry["call_type"] == "pass_through_endpoint" | |
), "Call type should be pass_through_endpoint" | |
assert ( | |
log_entry["api_base"] == "https://api.anthropic.com/v1/messages" | |
), "API base should be Anthropic's endpoint" | |
# Token and spend assertions | |
assert log_entry["spend"] > 0, "Spend value should not be None" | |
assert isinstance( | |
log_entry["spend"], (int, float) | |
), "Spend should be a number" | |
assert log_entry["total_tokens"] > 0, "Should have some tokens" | |
assert ( | |
log_entry["prompt_tokens"] == anthropic_api_input_tokens | |
), f"Should have prompt tokens matching anthropic api. Expected {anthropic_api_input_tokens} but got {log_entry['prompt_tokens']}" | |
assert ( | |
log_entry["completion_tokens"] == anthropic_api_output_tokens | |
), f"Should have completion tokens matching anthropic api. Expected {anthropic_api_output_tokens} but got {log_entry['completion_tokens']}" | |
assert ( | |
log_entry["total_tokens"] | |
== log_entry["prompt_tokens"] + log_entry["completion_tokens"] | |
), "Total tokens should equal prompt + completion" | |
# Time assertions | |
assert all( | |
key in log_entry | |
for key in ["startTime", "endTime", "completionStartTime"] | |
), "Should have all time fields" | |
assert ( | |
log_entry["startTime"] < log_entry["endTime"] | |
), "Start time should be before end time" | |
# Metadata assertions | |
assert ( | |
str(log_entry["cache_hit"]).lower() != "true" | |
), "Cache should be off" | |
assert log_entry["request_tags"] == [ | |
"test-tag-1", | |
"test-tag-2", | |
], "Tags should match input" | |
assert ( | |
"user_api_key" in log_entry["metadata"] | |
), "Should have user API key in metadata" | |
assert "claude" in log_entry["model"] | |
assert log_entry["custom_llm_provider"] == "anthropic" | |
async def test_anthropic_streaming_with_headers(): | |
print("making streaming request to anthropic passthrough with aiohttp") | |
headers = { | |
"Authorization": f"Bearer sk-1234", | |
"Content-Type": "application/json", | |
"Anthropic-Version": "2023-06-01", | |
} | |
payload = { | |
"model": "claude-3-5-sonnet-20241022", | |
"max_tokens": 10, | |
"messages": [ | |
{"role": "user", "content": "Say 'hello stream test' and nothing else"} | |
], | |
"stream": True, | |
"litellm_metadata": { | |
"tags": ["test-tag-stream-1", "test-tag-stream-2"], | |
"user": "test-user-1", | |
}, | |
} | |
async with aiohttp.ClientSession() as session: | |
async with session.post( | |
"http://0.0.0.0:4000/anthropic/v1/messages", json=payload, headers=headers | |
) as response: | |
print("response status") | |
print(response.status) | |
assert response.status == 200, "Response should be successful" | |
response_headers = response.headers | |
print(f"Response headers: {response_headers}") | |
litellm_call_id = response_headers.get("x-litellm-call-id") | |
print(f"LiteLLM Call ID: {litellm_call_id}") | |
collected_output = [] | |
async for line in response.content: | |
if line: | |
text = line.decode("utf-8").strip() | |
if text.startswith("data: "): | |
collected_output.append(text[6:]) # Remove 'data: ' prefix | |
print("Collected output:", "".join(collected_output)) | |
anthropic_api_usage_chunks = [] | |
for chunk in collected_output: | |
chunk_json = json.loads(chunk) | |
if "usage" in chunk_json: | |
anthropic_api_usage_chunks.append(chunk_json["usage"]) | |
elif "message" in chunk_json and "usage" in chunk_json["message"]: | |
anthropic_api_usage_chunks.append(chunk_json["message"]["usage"]) | |
print( | |
"anthropic_api_usage_chunks", | |
json.dumps(anthropic_api_usage_chunks, indent=4, default=str), | |
) | |
anthropic_api_input_tokens = sum( | |
[usage.get("input_tokens", 0) for usage in anthropic_api_usage_chunks] | |
) | |
anthropic_api_output_tokens = max( | |
[usage.get("output_tokens", 0) for usage in anthropic_api_usage_chunks] | |
) | |
print("anthropic_api_input_tokens", anthropic_api_input_tokens) | |
print("anthropic_api_output_tokens", anthropic_api_output_tokens) | |
# Wait for spend to be logged | |
await asyncio.sleep(20) | |
# Check spend logs for this specific request | |
async with session.get( | |
f"http://0.0.0.0:4000/spend/logs?request_id={litellm_call_id}", | |
headers={"Authorization": "Bearer sk-1234"}, | |
) as spend_response: | |
spend_data = await spend_response.json() | |
print(f"Spend data: {spend_data}") | |
assert spend_data is not None, "Should have spend data for the request" | |
log_entry = spend_data[ | |
0 | |
] # Get the first (and should be only) log entry | |
# Basic existence checks | |
assert spend_data is not None, "Should have spend data for the request" | |
assert isinstance(log_entry, dict), "Log entry should be a dictionary" | |
# Request metadata assertions | |
assert ( | |
log_entry["request_id"] == litellm_call_id | |
), "Request ID should match" | |
assert ( | |
log_entry["call_type"] == "pass_through_endpoint" | |
), "Call type should be pass_through_endpoint" | |
# assert ( | |
# log_entry["api_base"] == "https://api.anthropic.com/v1/messages" | |
# ), "API base should be Anthropic's endpoint" | |
# Token and spend assertions | |
assert log_entry["spend"] > 0, "Spend value should not be None" | |
assert isinstance( | |
log_entry["spend"], (int, float) | |
), "Spend should be a number" | |
assert log_entry["total_tokens"] > 0, "Should have some tokens" | |
assert ( | |
log_entry["prompt_tokens"] == anthropic_api_input_tokens | |
), f"Should have prompt tokens matching anthropic api. Expected {anthropic_api_input_tokens} but got {log_entry['prompt_tokens']}" | |
assert ( | |
log_entry["completion_tokens"] == anthropic_api_output_tokens | |
), f"Should have completion tokens matching anthropic api. Expected {anthropic_api_output_tokens} but got {log_entry['completion_tokens']}" | |
assert ( | |
log_entry["total_tokens"] | |
== log_entry["prompt_tokens"] + log_entry["completion_tokens"] | |
), "Total tokens should equal prompt + completion" | |
# Time assertions | |
assert all( | |
key in log_entry | |
for key in ["startTime", "endTime", "completionStartTime"] | |
), "Should have all time fields" | |
assert ( | |
log_entry["startTime"] < log_entry["endTime"] | |
), "Start time should be before end time" | |
# Metadata assertions | |
assert ( | |
str(log_entry["cache_hit"]).lower() != "true" | |
), "Cache should be off" | |
assert log_entry["request_tags"] == [ | |
"test-tag-stream-1", | |
"test-tag-stream-2", | |
], "Tags should match input" | |
assert ( | |
"user_api_key" in log_entry["metadata"] | |
), "Should have user API key in metadata" | |
assert "claude" in log_entry["model"] | |
assert log_entry["end_user"] == "test-user-1" | |
assert log_entry["custom_llm_provider"] == "anthropic" | |