Spaces:
Configuration error
Configuration error
import base64 | |
import json | |
import os | |
import sys | |
from dotenv import load_dotenv | |
import litellm.litellm_core_utils | |
import litellm.litellm_core_utils.prompt_templates | |
import litellm.litellm_core_utils.prompt_templates.factory | |
load_dotenv() | |
from unittest.mock import MagicMock | |
sys.path.insert( | |
0, os.path.abspath("../..") | |
) # Adds the parent directory to the system path | |
import pytest | |
import litellm | |
from litellm import get_optional_params | |
from litellm.llms.vertex_ai.gemini.transformation import _process_gemini_image | |
from litellm.types.llms.vertex_ai import BlobType | |
def encode_image_to_base64(image_path): | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode("utf-8") | |
def test_completion_pydantic_obj_2(): | |
from pydantic import BaseModel | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
litellm.set_verbose = True | |
class CalendarEvent(BaseModel): | |
name: str | |
date: str | |
participants: list[str] | |
class EventsList(BaseModel): | |
events: list[CalendarEvent] | |
messages = [ | |
{"role": "user", "content": "List important events from the 20th century."} | |
] | |
expected_request_body = { | |
"contents": [ | |
{ | |
"role": "user", | |
"parts": [{"text": "List important events from the 20th century."}], | |
} | |
], | |
"generationConfig": { | |
"response_mime_type": "application/json", | |
"response_schema": { | |
"properties": { | |
"events": { | |
"items": { | |
"properties": { | |
"name": {"title": "Name", "type": "string"}, | |
"date": {"title": "Date", "type": "string"}, | |
"participants": { | |
"items": {"type": "string"}, | |
"title": "Participants", | |
"type": "array", | |
}, | |
}, | |
"propertyOrdering": [ | |
"name", | |
"date", | |
"participants", | |
], | |
"required": ["name", "date", "participants"], | |
"title": "CalendarEvent", | |
"type": "object", | |
}, | |
"title": "Events", | |
"type": "array", | |
} | |
}, | |
"propertyOrdering": ["events"], | |
"required": ["events"], | |
"title": "EventsList", | |
"type": "object", | |
}, | |
}, | |
} | |
client = HTTPHandler() | |
with patch.object(client, "post", new=MagicMock()) as mock_post: | |
mock_post.return_value = expected_request_body | |
try: | |
response = litellm.completion( | |
model="gemini/gemini-1.5-pro", | |
messages=messages, | |
response_format=EventsList, | |
client=client, | |
) | |
# print(response) | |
except Exception as e: | |
print(e) | |
mock_post.assert_called_once() | |
print(mock_post.call_args.kwargs) | |
assert mock_post.call_args.kwargs["json"] == expected_request_body | |
def test_build_vertex_schema(): | |
import json | |
from litellm.llms.vertex_ai.common_utils import _build_vertex_schema | |
schema = { | |
"type": "object", | |
"my-random-key": "my-random-value", | |
"properties": { | |
"recipes": { | |
"type": "array", | |
"items": { | |
"type": "object", | |
"properties": {"recipe_name": {"type": "string"}}, | |
"required": ["recipe_name"], | |
}, | |
} | |
}, | |
"required": ["recipes"], | |
} | |
new_schema = _build_vertex_schema(schema) | |
print(f"new_schema: {new_schema}") | |
assert new_schema["type"] == schema["type"] | |
assert new_schema["properties"] == schema["properties"] | |
assert "required" in new_schema and new_schema["required"] == schema["required"] | |
assert "my-random-key" not in new_schema | |
def test_vertex_tool_params(tools, key): | |
optional_params = get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
tools=tools, | |
) | |
print(optional_params) | |
assert optional_params["tools"][0][key] == {} | |
def test_vertex_function_translation(tool, expect_parameters): | |
""" | |
If param not set, don't set it in the request | |
""" | |
tools = [tool] | |
optional_params = get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
tools=tools, | |
) | |
print(optional_params) | |
if expect_parameters: | |
assert "parameters" in optional_params["tools"][0]["function_declarations"][0] | |
else: | |
assert ( | |
"parameters" not in optional_params["tools"][0]["function_declarations"][0] | |
) | |
def test_function_calling_with_gemini(): | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
litellm.set_verbose = True | |
client = HTTPHandler() | |
with patch.object(client, "post", new=MagicMock()) as mock_post: | |
try: | |
litellm.completion( | |
model="gemini/gemini-1.5-pro-002", | |
messages=[ | |
{ | |
"content": [ | |
{ | |
"type": "text", | |
"text": "You are a helpful assistant that can interact with a computer to solve tasks.\n<IMPORTANT>\n* If user provides a path, you should NOT assume it's relative to the current working directory. Instead, you should explore the file system to find the file before working on it.\n</IMPORTANT>\n", | |
} | |
], | |
"role": "system", | |
}, | |
{ | |
"content": [{"type": "text", "text": "Hey, how's it going?"}], | |
"role": "user", | |
}, | |
], | |
tools=[ | |
{ | |
"type": "function", | |
"function": { | |
"name": "finish", | |
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.", | |
}, | |
}, | |
], | |
client=client, | |
) | |
except Exception as e: | |
print(e) | |
mock_post.assert_called_once() | |
print(mock_post.call_args.kwargs) | |
assert mock_post.call_args.kwargs["json"]["tools"] == [ | |
{ | |
"function_declarations": [ | |
{ | |
"name": "finish", | |
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.", | |
} | |
] | |
} | |
] | |
def test_multiple_function_call(): | |
litellm.set_verbose = True | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
client = HTTPHandler() | |
messages = [ | |
{"role": "user", "content": [{"type": "text", "text": "do test"}]}, | |
{ | |
"role": "assistant", | |
"content": [{"type": "text", "text": "test"}], | |
"tool_calls": [ | |
{ | |
"index": 0, | |
"function": {"arguments": '{"arg": "test"}', "name": "test"}, | |
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", | |
"type": "function", | |
}, | |
{ | |
"index": 1, | |
"function": {"arguments": '{"arg": "test2"}', "name": "test2"}, | |
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02", | |
"type": "function", | |
}, | |
], | |
}, | |
{ | |
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", | |
"role": "tool", | |
"name": "test", | |
"content": [{"type": "text", "text": "42"}], | |
}, | |
{ | |
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02", | |
"role": "tool", | |
"name": "test2", | |
"content": [{"type": "text", "text": "15"}], | |
}, | |
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]}, | |
] | |
response_body = { | |
"candidates": [ | |
{ | |
"content": { | |
"parts": [ | |
{ | |
"text": 'The `default_api.test` function call returned a JSON object indicating a successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "42".\n\nSimilarly, the `default_api.test2` function call also returned a JSON object showing successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "15".\n\nIn short, both test functions executed successfully and returned different numerical string values ("42" and "15"). The significance of these numbers depends on the internal logic of the `test` and `test2` functions within the `default_api`.\n' | |
} | |
], | |
"role": "model", | |
}, | |
"finishReason": "STOP", | |
"avgLogprobs": -0.20577410289219447, | |
} | |
], | |
"usageMetadata": { | |
"promptTokenCount": 128, | |
"candidatesTokenCount": 168, | |
"totalTokenCount": 296, | |
}, | |
"modelVersion": "gemini-1.5-flash-002", | |
} | |
mock_response = MagicMock() | |
mock_response.json.return_value = response_body | |
with patch.object(client, "post", return_value=mock_response) as mock_post: | |
r = litellm.completion( | |
messages=messages, model="gemini/gemini-1.5-flash-002", client=client | |
) | |
assert len(r.choices) > 0 | |
print(mock_post.call_args.kwargs["json"]) | |
assert mock_post.call_args.kwargs["json"] == { | |
"contents": [ | |
{"role": "user", "parts": [{"text": "do test"}]}, | |
{ | |
"role": "model", | |
"parts": [ | |
{"text": "test"}, | |
{"function_call": {"name": "test", "args": {"arg": "test"}}}, | |
{"function_call": {"name": "test2", "args": {"arg": "test2"}}}, | |
], | |
}, | |
{ | |
"parts": [ | |
{ | |
"function_response": { | |
"name": "test", | |
"response": {"content": "42"}, | |
} | |
}, | |
{ | |
"function_response": { | |
"name": "test2", | |
"response": {"content": "15"}, | |
} | |
}, | |
] | |
}, | |
{"role": "user", "parts": [{"text": "tell me the results."}]}, | |
], | |
"generationConfig": {}, | |
} | |
def test_multiple_function_call_changed_text_pos(): | |
litellm.set_verbose = True | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
client = HTTPHandler() | |
messages = [ | |
{"role": "user", "content": [{"type": "text", "text": "do test"}]}, | |
{ | |
"tool_calls": [ | |
{ | |
"index": 0, | |
"function": {"arguments": '{"arg": "test"}', "name": "test"}, | |
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", | |
"type": "function", | |
}, | |
{ | |
"index": 1, | |
"function": {"arguments": '{"arg": "test2"}', "name": "test2"}, | |
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02", | |
"type": "function", | |
}, | |
], | |
"role": "assistant", | |
"content": [{"type": "text", "text": "test"}], | |
}, | |
{ | |
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02", | |
"role": "tool", | |
"name": "test2", | |
"content": [{"type": "text", "text": "15"}], | |
}, | |
{ | |
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec", | |
"role": "tool", | |
"name": "test", | |
"content": [{"type": "text", "text": "42"}], | |
}, | |
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]}, | |
] | |
response_body = { | |
"candidates": [ | |
{ | |
"content": { | |
"parts": [ | |
{ | |
"text": 'The code executed two functions, `test` and `test2`.\n\n* **`test`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "42". This is likely a response from a function that processed the input "test" and returned a calculated or pre-defined value.\n\n* **`test2`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "15". Similar to `test`, this suggests a function that processes the input "test2" and returns a specific result.\n\nIn short, both functions appear to be simple tests that return different hardcoded or calculated values based on their input arguments.\n' | |
} | |
], | |
"role": "model", | |
}, | |
"finishReason": "STOP", | |
"avgLogprobs": -0.32848488592332409, | |
} | |
], | |
"usageMetadata": { | |
"promptTokenCount": 128, | |
"candidatesTokenCount": 155, | |
"totalTokenCount": 283, | |
}, | |
"modelVersion": "gemini-1.5-flash-002", | |
} | |
mock_response = MagicMock() | |
mock_response.json.return_value = response_body | |
with patch.object(client, "post", return_value=mock_response) as mock_post: | |
resp = litellm.completion( | |
messages=messages, model="gemini/gemini-1.5-flash-002", client=client | |
) | |
assert len(resp.choices) > 0 | |
mock_post.assert_called_once() | |
print(mock_post.call_args.kwargs["json"]["contents"]) | |
assert mock_post.call_args.kwargs["json"]["contents"] == [ | |
{"role": "user", "parts": [{"text": "do test"}]}, | |
{ | |
"role": "model", | |
"parts": [ | |
{"text": "test"}, | |
{"function_call": {"name": "test", "args": {"arg": "test"}}}, | |
{"function_call": {"name": "test2", "args": {"arg": "test2"}}}, | |
], | |
}, | |
{ | |
"parts": [ | |
{ | |
"function_response": { | |
"name": "test2", | |
"response": {"content": "15"}, | |
} | |
}, | |
{ | |
"function_response": { | |
"name": "test", | |
"response": {"content": "42"}, | |
} | |
}, | |
] | |
}, | |
{"role": "user", "parts": [{"text": "tell me the results."}]}, | |
] | |
def test_function_calling_with_gemini_multiple_results(): | |
litellm.set_verbose = True | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
client = HTTPHandler() | |
# Step 1: send the conversation and available functions to the model | |
messages = [ | |
{ | |
"role": "user", | |
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses", | |
} | |
] | |
tools = [ | |
{ | |
"type": "function", | |
"function": { | |
"name": "get_current_weather", | |
"description": "Get the current weather in a given location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state", | |
}, | |
"unit": { | |
"type": "string", | |
"enum": ["celsius", "fahrenheit"], | |
}, | |
}, | |
"required": ["location"], | |
}, | |
}, | |
} | |
] | |
response_body = { | |
"candidates": [ | |
{ | |
"content": { | |
"parts": [ | |
{ | |
"functionCall": { | |
"name": "get_current_weather", | |
"args": {"location": "San Francisco"}, | |
} | |
}, | |
{ | |
"functionCall": { | |
"name": "get_current_weather", | |
"args": {"location": "Tokyo"}, | |
} | |
}, | |
{ | |
"functionCall": { | |
"name": "get_current_weather", | |
"args": {"location": "Paris"}, | |
} | |
}, | |
], | |
"role": "model", | |
}, | |
"finishReason": "STOP", | |
"avgLogprobs": -0.0040788948535919189, | |
} | |
], | |
"usageMetadata": { | |
"promptTokenCount": 90, | |
"candidatesTokenCount": 22, | |
"totalTokenCount": 112, | |
}, | |
"modelVersion": "gemini-1.5-flash-002", | |
} | |
mock_response = MagicMock() | |
mock_response.json.return_value = response_body | |
with patch.object(client, "post", return_value=mock_response): | |
response = litellm.completion( | |
model="gemini/gemini-1.5-flash-002", | |
messages=messages, | |
tools=tools, | |
tool_choice="required", | |
client=client, | |
) | |
print("Response\n", response) | |
assert len(response.choices[0].message.tool_calls) == 3 | |
expected_locations = ["San Francisco", "Tokyo", "Paris"] | |
for idx, tool_call in enumerate(response.choices[0].message.tool_calls): | |
json_args = json.loads(tool_call.function.arguments) | |
assert json_args["location"] == expected_locations[idx] | |
def test_logprobs_unit_test(): | |
from litellm import VertexGeminiConfig | |
result = VertexGeminiConfig()._transform_logprobs( | |
logprobs_result={ | |
"topCandidates": [ | |
{ | |
"candidates": [ | |
{"token": "```", "logProbability": -1.5496514e-06}, | |
{"token": "`", "logProbability": -13.375002}, | |
{"token": "``", "logProbability": -21.875002}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "tool", "logProbability": 0}, | |
{"token": "too", "logProbability": -29.031433}, | |
{"token": "to", "logProbability": -34.11199}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "code", "logProbability": 0}, | |
{"token": "co", "logProbability": -28.114716}, | |
{"token": "c", "logProbability": -29.283161}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "\n", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "print", "logProbability": 0}, | |
{"token": "p", "logProbability": -19.7494}, | |
{"token": "prin", "logProbability": -21.117342}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "default", "logProbability": 0}, | |
{"token": "get", "logProbability": -16.811178}, | |
{"token": "ge", "logProbability": -19.031078}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "api", "logProbability": 0}, | |
{"token": "ap", "logProbability": -26.501019}, | |
{"token": "a", "logProbability": -30.905857}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": ".", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "get", "logProbability": 0}, | |
{"token": "ge", "logProbability": -19.984676}, | |
{"token": "g", "logProbability": -20.527714}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "current", "logProbability": 0}, | |
{"token": "cur", "logProbability": -28.193565}, | |
{"token": "cu", "logProbability": -29.636738}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "weather", "logProbability": 0}, | |
{"token": "we", "logProbability": -27.887215}, | |
{"token": "wea", "logProbability": -31.851082}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "location", "logProbability": 0}, | |
{"token": "loc", "logProbability": -19.152641}, | |
{"token": " location", "logProbability": -21.981709}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '="', "logProbability": -0.034490786}, | |
{"token": "='", "logProbability": -3.398928}, | |
{"token": "=", "logProbability": -7.6194153}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "San", "logProbability": -6.5561944e-06}, | |
{"token": '\\"', "logProbability": -12.015556}, | |
{"token": "Paris", "logProbability": -14.647776}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": " Francisco", "logProbability": -3.5760596e-07}, | |
{"token": " Frans", "logProbability": -14.83527}, | |
{"token": " francisco", "logProbability": -19.796852}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '"))', "logProbability": -6.079254e-06}, | |
{"token": ",", "logProbability": -12.106029}, | |
{"token": '",', "logProbability": -14.56927}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "\n", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "print", "logProbability": -0.04140338}, | |
{"token": "```", "logProbability": -3.2049975}, | |
{"token": "p", "logProbability": -22.087523}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "default", "logProbability": 0}, | |
{"token": "get", "logProbability": -20.266342}, | |
{"token": "de", "logProbability": -20.906395}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "api", "logProbability": 0}, | |
{"token": "ap", "logProbability": -27.712265}, | |
{"token": "a", "logProbability": -31.986958}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": ".", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "get", "logProbability": 0}, | |
{"token": "g", "logProbability": -23.569286}, | |
{"token": "ge", "logProbability": -23.829632}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "current", "logProbability": 0}, | |
{"token": "cur", "logProbability": -30.125153}, | |
{"token": "curr", "logProbability": -31.756569}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "weather", "logProbability": 0}, | |
{"token": "we", "logProbability": -27.743786}, | |
{"token": "w", "logProbability": -30.594503}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "location", "logProbability": 0}, | |
{"token": "loc", "logProbability": -21.177715}, | |
{"token": " location", "logProbability": -22.166002}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '="', "logProbability": -1.5617967e-05}, | |
{"token": "='", "logProbability": -11.080961}, | |
{"token": "=", "logProbability": -15.164277}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "Tokyo", "logProbability": -3.0041514e-05}, | |
{"token": "tokyo", "logProbability": -10.650261}, | |
{"token": "Paris", "logProbability": -12.096886}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '"))', "logProbability": -1.1922384e-07}, | |
{"token": '",', "logProbability": -16.61921}, | |
{"token": ",", "logProbability": -17.911102}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "\n", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "print", "logProbability": -3.5760596e-07}, | |
{"token": "```", "logProbability": -14.949171}, | |
{"token": "p", "logProbability": -24.321035}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "default", "logProbability": 0}, | |
{"token": "de", "logProbability": -27.885206}, | |
{"token": "def", "logProbability": -28.40597}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "api", "logProbability": 0}, | |
{"token": "ap", "logProbability": -25.905933}, | |
{"token": "a", "logProbability": -30.408901}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": ".", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "get", "logProbability": 0}, | |
{"token": "g", "logProbability": -22.274963}, | |
{"token": "ge", "logProbability": -23.285828}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "current", "logProbability": 0}, | |
{"token": "cur", "logProbability": -28.442535}, | |
{"token": "curr", "logProbability": -29.95087}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "_", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "weather", "logProbability": 0}, | |
{"token": "we", "logProbability": -27.307909}, | |
{"token": "w", "logProbability": -31.076736}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "(", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "location", "logProbability": 0}, | |
{"token": "loc", "logProbability": -21.535915}, | |
{"token": "lo", "logProbability": -23.028284}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '="', "logProbability": -8.821511e-06}, | |
{"token": "='", "logProbability": -11.700986}, | |
{"token": "=", "logProbability": -14.50358}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "Paris", "logProbability": 0}, | |
{"token": "paris", "logProbability": -18.07075}, | |
{"token": "Par", "logProbability": -21.911625}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": '"))', "logProbability": 0}, | |
{"token": '")', "logProbability": -17.916853}, | |
{"token": ",", "logProbability": -18.318272}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "\n", "logProbability": 0}, | |
{"token": "ont", "logProbability": -1.2676506e30}, | |
{"token": " п", "logProbability": -1.2676506e30}, | |
] | |
}, | |
{ | |
"candidates": [ | |
{"token": "```", "logProbability": -3.5763796e-06}, | |
{"token": "print", "logProbability": -12.535343}, | |
{"token": "``", "logProbability": -19.670813}, | |
] | |
}, | |
], | |
"chosenCandidates": [ | |
{"token": "```", "logProbability": -1.5496514e-06}, | |
{"token": "tool", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "code", "logProbability": 0}, | |
{"token": "\n", "logProbability": 0}, | |
{"token": "print", "logProbability": 0}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "default", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "api", "logProbability": 0}, | |
{"token": ".", "logProbability": 0}, | |
{"token": "get", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "current", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "weather", "logProbability": 0}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "location", "logProbability": 0}, | |
{"token": '="', "logProbability": -0.034490786}, | |
{"token": "San", "logProbability": -6.5561944e-06}, | |
{"token": " Francisco", "logProbability": -3.5760596e-07}, | |
{"token": '"))', "logProbability": -6.079254e-06}, | |
{"token": "\n", "logProbability": 0}, | |
{"token": "print", "logProbability": -0.04140338}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "default", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "api", "logProbability": 0}, | |
{"token": ".", "logProbability": 0}, | |
{"token": "get", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "current", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "weather", "logProbability": 0}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "location", "logProbability": 0}, | |
{"token": '="', "logProbability": -1.5617967e-05}, | |
{"token": "Tokyo", "logProbability": -3.0041514e-05}, | |
{"token": '"))', "logProbability": -1.1922384e-07}, | |
{"token": "\n", "logProbability": 0}, | |
{"token": "print", "logProbability": -3.5760596e-07}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "default", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "api", "logProbability": 0}, | |
{"token": ".", "logProbability": 0}, | |
{"token": "get", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "current", "logProbability": 0}, | |
{"token": "_", "logProbability": 0}, | |
{"token": "weather", "logProbability": 0}, | |
{"token": "(", "logProbability": 0}, | |
{"token": "location", "logProbability": 0}, | |
{"token": '="', "logProbability": -8.821511e-06}, | |
{"token": "Paris", "logProbability": 0}, | |
{"token": '"))', "logProbability": 0}, | |
{"token": "\n", "logProbability": 0}, | |
{"token": "```", "logProbability": -3.5763796e-06}, | |
], | |
} | |
) | |
print(result) | |
def test_logprobs(): | |
litellm.set_verbose = True | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
client = HTTPHandler() | |
response_body = { | |
"candidates": [ | |
{ | |
"content": { | |
"parts": [ | |
{ | |
"text": "I do not have access to real-time information, including current weather conditions. To get the current weather in San Francisco, I recommend checking a reliable weather website or app such as Google Weather, AccuWeather, or the National Weather Service.\n" | |
} | |
], | |
"role": "model", | |
}, | |
"finishReason": "STOP", | |
"avgLogprobs": -0.04666396617889404, | |
"logprobsResult": { | |
"chosenCandidates": [ | |
{"token": "I", "logProbability": -1.08472495e-05}, | |
{"token": " do", "logProbability": -0.00012611414}, | |
{"token": " not", "logProbability": 0}, | |
{"token": " have", "logProbability": 0}, | |
{"token": " access", "logProbability": -0.0008849616}, | |
{"token": " to", "logProbability": 0}, | |
{"token": " real", "logProbability": -1.1922384e-07}, | |
{"token": "-", "logProbability": 0}, | |
{"token": "time", "logProbability": 0}, | |
{"token": " information", "logProbability": -2.2409657e-05}, | |
{"token": ",", "logProbability": 0}, | |
{"token": " including", "logProbability": 0}, | |
{"token": " current", "logProbability": -0.14274147}, | |
{"token": " weather", "logProbability": 0}, | |
{"token": " conditions", "logProbability": -0.0056300927}, | |
{"token": ".", "logProbability": -3.5760596e-07}, | |
{"token": " ", "logProbability": -0.06392521}, | |
{"token": "To", "logProbability": -2.3844768e-07}, | |
{"token": " get", "logProbability": -0.058974747}, | |
{"token": " the", "logProbability": 0}, | |
{"token": " current", "logProbability": 0}, | |
{"token": " weather", "logProbability": -2.3844768e-07}, | |
{"token": " in", "logProbability": -2.3844768e-07}, | |
{"token": " San", "logProbability": 0}, | |
{"token": " Francisco", "logProbability": 0}, | |
{"token": ",", "logProbability": 0}, | |
{"token": " I", "logProbability": -0.6188003}, | |
{"token": " recommend", "logProbability": -1.0370523e-05}, | |
{"token": " checking", "logProbability": -0.00014005086}, | |
{"token": " a", "logProbability": 0}, | |
{"token": " reliable", "logProbability": -1.5496514e-06}, | |
{"token": " weather", "logProbability": -8.344534e-07}, | |
{"token": " website", "logProbability": -0.0078000566}, | |
{"token": " or", "logProbability": -1.1922384e-07}, | |
{"token": " app", "logProbability": 0}, | |
{"token": " such", "logProbability": -0.9289338}, | |
{"token": " as", "logProbability": 0}, | |
{"token": " Google", "logProbability": -0.0046935496}, | |
{"token": " Weather", "logProbability": 0}, | |
{"token": ",", "logProbability": 0}, | |
{"token": " Accu", "logProbability": 0}, | |
{"token": "Weather", "logProbability": -0.00013909786}, | |
{"token": ",", "logProbability": 0}, | |
{"token": " or", "logProbability": -0.31303275}, | |
{"token": " the", "logProbability": -0.17583296}, | |
{"token": " National", "logProbability": -0.010806266}, | |
{"token": " Weather", "logProbability": 0}, | |
{"token": " Service", "logProbability": 0}, | |
{"token": ".", "logProbability": -0.00068947335}, | |
{"token": "\n", "logProbability": 0}, | |
] | |
}, | |
} | |
], | |
"usageMetadata": { | |
"promptTokenCount": 11, | |
"candidatesTokenCount": 50, | |
"totalTokenCount": 61, | |
}, | |
"modelVersion": "gemini-1.5-flash-002", | |
} | |
mock_response = MagicMock() | |
mock_response.json.return_value = response_body | |
with patch.object(client, "post", return_value=mock_response): | |
resp = litellm.completion( | |
model="gemini/gemini-1.5-flash-002", | |
messages=[ | |
{"role": "user", "content": "What's the weather like in San Francisco?"} | |
], | |
logprobs=True, | |
client=client, | |
) | |
print(resp) | |
assert resp.choices[0].logprobs is not None | |
def test_process_gemini_image(): | |
"""Test the _process_gemini_image function for different image sources""" | |
from litellm.llms.vertex_ai.gemini.transformation import _process_gemini_image | |
from litellm.types.llms.vertex_ai import FileDataType | |
# Test GCS URI | |
gcs_result = _process_gemini_image("gs://bucket/image.png") | |
assert gcs_result["file_data"] == FileDataType( | |
mime_type="image/png", file_uri="gs://bucket/image.png" | |
) | |
# Test gs url with format specified | |
gcs_result = _process_gemini_image("gs://bucket/image", format="image/jpeg") | |
assert gcs_result["file_data"] == FileDataType( | |
mime_type="image/jpeg", file_uri="gs://bucket/image" | |
) | |
# Test HTTPS JPG URL | |
https_result = _process_gemini_image("https://example.com/image.jpg") | |
print("https_result JPG", https_result) | |
assert https_result["file_data"] == FileDataType( | |
mime_type="image/jpeg", file_uri="https://example.com/image.jpg" | |
) | |
# Test HTTPS PNG URL | |
https_result = _process_gemini_image("https://example.com/image.png") | |
print("https_result PNG", https_result) | |
assert https_result["file_data"] == FileDataType( | |
mime_type="image/png", file_uri="https://example.com/image.png" | |
) | |
# Test HTTPS VIDEO URL | |
https_result = _process_gemini_image("https://cloud-samples-data/video/animals.mp4") | |
print("https_result PNG", https_result) | |
assert https_result["file_data"] == FileDataType( | |
mime_type="video/mp4", file_uri="https://cloud-samples-data/video/animals.mp4" | |
) | |
# Test HTTPS PDF URL | |
https_result = _process_gemini_image("https://cloud-samples-data/pdf/animals.pdf") | |
print("https_result PDF", https_result) | |
assert https_result["file_data"] == FileDataType( | |
mime_type="application/pdf", | |
file_uri="https://cloud-samples-data/pdf/animals.pdf", | |
) | |
# Test base64 image | |
base64_image = "..." | |
base64_result = _process_gemini_image(base64_image) | |
print("base64_result", base64_result) | |
assert base64_result["inline_data"]["mime_type"] == "image/jpeg" | |
assert base64_result["inline_data"]["data"] == "/9j/4AAQSkZJRg..." | |
def test_get_image_mime_type_from_url(): | |
"""Test the _get_image_mime_type_from_url function for different image URLs""" | |
from litellm.llms.vertex_ai.gemini.transformation import ( | |
_get_image_mime_type_from_url, | |
) | |
# Test JPEG images | |
assert ( | |
_get_image_mime_type_from_url("https://example.com/image.jpg") == "image/jpeg" | |
) | |
assert ( | |
_get_image_mime_type_from_url("https://example.com/image.jpeg") == "image/jpeg" | |
) | |
assert ( | |
_get_image_mime_type_from_url("https://example.com/IMAGE.JPG") == "image/jpeg" | |
) | |
# Test PNG images | |
assert _get_image_mime_type_from_url("https://example.com/image.png") == "image/png" | |
assert _get_image_mime_type_from_url("https://example.com/IMAGE.PNG") == "image/png" | |
# Test WebP images | |
assert ( | |
_get_image_mime_type_from_url("https://example.com/image.webp") == "image/webp" | |
) | |
assert ( | |
_get_image_mime_type_from_url("https://example.com/IMAGE.WEBP") == "image/webp" | |
) | |
# Test audio formats | |
assert _get_image_mime_type_from_url("https://example.com/audio.ogg") == "audio/ogg" | |
assert _get_image_mime_type_from_url("https://example.com/track.OGG") == "audio/ogg" | |
# Test unsupported formats | |
assert _get_image_mime_type_from_url("https://example.com/image.gif") is None | |
assert _get_image_mime_type_from_url("https://example.com/image.bmp") is None | |
assert _get_image_mime_type_from_url("https://example.com/image") is None | |
assert _get_image_mime_type_from_url("invalid_url") is None | |
def test_vertex_embedding_url(model, expected_url): | |
""" | |
Test URL generation for embedding models, including numeric model IDs (fine-tuned models | |
Relevant issue: https://github.com/BerriAI/litellm/issues/6482 | |
When a fine-tuned embedding model is used, the URL is different from the standard one. | |
""" | |
from litellm.llms.vertex_ai.common_utils import _get_vertex_url | |
url, endpoint = _get_vertex_url( | |
mode="embedding", | |
model=model, | |
stream=False, | |
vertex_project="project-id", | |
vertex_location="us-central1", | |
vertex_api_version="v1", | |
) | |
assert url == expected_url | |
assert endpoint == "predict" | |
from unittest.mock import Mock, patch | |
import pytest | |
# Add these fixtures below existing fixtures | |
def vertex_client(): | |
from litellm.llms.custom_httpx.http_handler import HTTPHandler | |
return HTTPHandler() | |
def encoded_images(): | |
image_paths = [ | |
"./tests/llm_translation/duck.png", | |
# "./duck.png", | |
"./tests/llm_translation/guinea.png", | |
# "./guinea.png", | |
] | |
return [encode_image_to_base64(path) for path in image_paths] | |
def mock_convert_url_to_base64(): | |
with patch( | |
"litellm.litellm_core_utils.prompt_templates.factory.convert_url_to_base64", | |
) as mock: | |
# Setup the mock to return a valid image object | |
mock.return_value = "..." | |
yield mock | |
def mock_blob(): | |
return Mock(spec=BlobType) | |
def test_process_gemini_image_http_url( | |
http_url: str, mock_convert_url_to_base64: Mock, mock_blob: Mock | |
) -> None: | |
""" | |
Test that _process_gemini_image correctly handles HTTP URLs. | |
Args: | |
http_url: Test HTTP URL | |
mock_convert_to_anthropic: Mocked convert_to_anthropic_image_obj function | |
mock_blob: Mocked BlobType instance | |
Vertex AI supports image urls. Ensure no network requests are made. | |
""" | |
expected_image_data = "..." | |
mock_convert_url_to_base64.return_value = expected_image_data | |
# Act | |
result = _process_gemini_image(http_url) | |
# assert result["file_data"]["file_uri"] == http_url | |
def test_aaavertex_embeddings_distances( | |
vertex_client, encoded_images, input_string, expected_closer_index | |
): | |
""" | |
Test cosine distances between image and text embeddings using Vertex AI multimodalembedding@001 | |
""" | |
from unittest.mock import patch | |
# Mock different embedding values to simulate realistic distances | |
mock_image_embeddings = [ | |
[0.9] + [0.1] * 767, # Duck embedding - closer to "Duck" | |
[0.1] * 767 + [0.9], # Guinea embedding - closer to "Guinea" | |
] | |
image_embeddings = [] | |
mock_response = MagicMock() | |
def mock_auth_token(*args, **kwargs): | |
return "my-fake-token", "pathrise-project" | |
with patch.object(vertex_client, "post", return_value=mock_response), patch.object( | |
litellm.main.vertex_multimodal_embedding, | |
"_ensure_access_token", | |
side_effect=mock_auth_token, | |
): | |
for idx, encoded_image in enumerate(encoded_images): | |
mock_response.json.return_value = { | |
"predictions": [{"imageEmbedding": mock_image_embeddings[idx]}] | |
} | |
mock_response.status_code = 200 | |
response = litellm.embedding( | |
model="vertex_ai/multimodalembedding@001", | |
input=[f"data:image/png;base64,{encoded_image}"], | |
client=vertex_client, | |
) | |
print("response: ", response) | |
image_embeddings.append(response.data[0].embedding) | |
# Mock text embedding based on input string | |
mock_text_embedding = ( | |
[0.9] + [0.1] * 767 if input_string == "Duck" else [0.1] * 767 + [0.9] | |
) | |
text_mock_response = MagicMock() | |
text_mock_response.json.return_value = { | |
"predictions": [{"imageEmbedding": mock_text_embedding}] | |
} | |
text_mock_response.status_code = 200 | |
with patch.object( | |
vertex_client, "post", return_value=text_mock_response | |
), patch.object( | |
litellm.main.vertex_multimodal_embedding, | |
"_ensure_access_token", | |
side_effect=mock_auth_token, | |
): | |
text_response = litellm.embedding( | |
model="vertex_ai/multimodalembedding@001", | |
input=[input_string], | |
client=vertex_client, | |
) | |
print("text_response: ", text_response) | |
text_embedding = text_response.data[0].embedding | |
def test_vertex_parallel_tool_calls_true(): | |
""" | |
Test that parallel_tool_calls = True sets the correct tool_config. | |
""" | |
tools = [ | |
{"type": "function", "function": {"name": "get_weather"}}, | |
{"type": "function", "function": {"name": "get_time"}}, | |
] | |
optional_params = get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
tools=tools, | |
parallel_tool_calls=True, | |
) | |
assert "tools" in optional_params | |
def test_vertex_parallel_tool_calls_false_multiple_tools_error(): | |
""" | |
Test that parallel_tool_calls = False with multiple tools raises UnsupportedParamsError | |
when drop_params is False. | |
""" | |
tools = [ | |
{"type": "function", "function": {"name": "get_weather"}}, | |
{"type": "function", "function": {"name": "get_time"}}, | |
] | |
with pytest.raises(litellm.utils.UnsupportedParamsError) as excinfo: | |
get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
tools=tools, | |
parallel_tool_calls=False, | |
) | |
assert ( | |
"`parallel_tool_calls=False` is not supported by Gemini when multiple tools are" | |
in str(excinfo.value) | |
) | |
# works when specified as "functions" | |
with pytest.raises(litellm.utils.UnsupportedParamsError) as excinfo: | |
get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
functions=tools, | |
parallel_tool_calls=False, | |
) | |
assert ( | |
"`parallel_tool_calls=False` is not supported by Gemini when multiple tools are" | |
in str(excinfo.value) | |
) | |
def test_vertex_parallel_tool_calls_false_single_tool(): | |
""" | |
Test that parallel_tool_calls = False with a single tool does not raise an error | |
and does not add 'tool_config' if not otherwise specified. | |
""" | |
tools = [ | |
{"type": "function", "function": {"name": "get_weather"}}, | |
] | |
optional_params = get_optional_params( | |
model="gemini-1.5-pro", | |
custom_llm_provider="vertex_ai", | |
tools=tools, | |
parallel_tool_calls=False, | |
) | |
assert "tools" in optional_params | |