""" Transformation logic from OpenAI /v1/embeddings format to Cohere's /v1/embed format. Why separate file? Make it easy to see how transformation works Convers - v3 embedding models - v2 embedding models Docs - https://docs.cohere.com/v2/reference/embed """ from typing import Any, List, Optional, Union, cast import httpx import litellm from litellm import COHERE_DEFAULT_EMBEDDING_INPUT_TYPE from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj from litellm.llms.base_llm import BaseEmbeddingConfig from litellm.llms.base_llm.chat.transformation import BaseLLMException from litellm.types.llms.bedrock import ( CohereEmbeddingRequest, CohereEmbeddingRequestWithModel, ) from litellm.types.llms.openai import AllEmbeddingInputValues, AllMessageValues from litellm.types.utils import EmbeddingResponse, PromptTokensDetailsWrapper, Usage from litellm.utils import is_base64_encoded from ..common_utils import CohereError class CohereEmbeddingConfig(BaseEmbeddingConfig): """ Reference: https://docs.cohere.com/v2/reference/embed """ def __init__(self) -> None: pass def get_supported_openai_params(self, model: str) -> List[str]: return ["encoding_format", "dimensions"] def map_openai_params( self, non_default_params: dict, optional_params: dict, model: str, drop_params: bool = False, ) -> dict: for k, v in non_default_params.items(): if k == "encoding_format": if isinstance(v, list): optional_params["embedding_types"] = v else: optional_params["embedding_types"] = [v] elif k == "dimensions": optional_params["output_dimension"] = v return optional_params def validate_environment( self, headers: dict, model: str, messages: List[AllMessageValues], optional_params: dict, litellm_params: dict, api_key: Optional[str] = None, api_base: Optional[str] = None, ) -> dict: default_headers = { "Content-Type": "application/json", } if api_key: default_headers["Authorization"] = f"Bearer {api_key}" headers = {**default_headers, **headers} return headers def _is_v3_model(self, model: str) -> bool: return "3" in model def get_complete_url( self, api_base: Optional[str], api_key: Optional[str], model: str, optional_params: dict, litellm_params: dict, stream: Optional[bool] = None, ) -> str: return api_base or "https://api.cohere.ai/v2/embed" def _transform_request( self, model: str, input: List[str], inference_params: dict ) -> CohereEmbeddingRequestWithModel: is_encoded = False for input_str in input: is_encoded = is_base64_encoded(input_str) if is_encoded: # check if string is b64 encoded image or not transformed_request = CohereEmbeddingRequestWithModel( model=model, images=input, input_type="image", ) else: transformed_request = CohereEmbeddingRequestWithModel( model=model, texts=input, input_type=COHERE_DEFAULT_EMBEDDING_INPUT_TYPE, ) for k, v in inference_params.items(): transformed_request[k] = v # type: ignore return transformed_request def transform_embedding_request( self, model: str, input: AllEmbeddingInputValues, optional_params: dict, headers: dict, ) -> dict: if isinstance(input, list) and ( isinstance(input[0], list) or isinstance(input[0], int) ): raise ValueError("Input must be a list of strings") return cast( dict, self._transform_request( model=model, input=cast(List[str], input) if isinstance(input, List) else [input], inference_params=optional_params, ), ) def _calculate_usage(self, input: List[str], encoding: Any, meta: dict) -> Usage: input_tokens = 0 text_tokens: Optional[int] = meta.get("billed_units", {}).get("input_tokens") image_tokens: Optional[int] = meta.get("billed_units", {}).get("images") prompt_tokens_details: Optional[PromptTokensDetailsWrapper] = None if image_tokens is None and text_tokens is None: for text in input: input_tokens += len(encoding.encode(text)) else: prompt_tokens_details = PromptTokensDetailsWrapper( image_tokens=image_tokens, text_tokens=text_tokens, ) if image_tokens: input_tokens += image_tokens if text_tokens: input_tokens += text_tokens return Usage( prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens, prompt_tokens_details=prompt_tokens_details, ) def _transform_response( self, response: httpx.Response, api_key: Optional[str], logging_obj: LiteLLMLoggingObj, data: Union[dict, CohereEmbeddingRequest], model_response: EmbeddingResponse, model: str, encoding: Any, input: list, ) -> EmbeddingResponse: response_json = response.json() ## LOGGING logging_obj.post_call( input=input, api_key=api_key, additional_args={"complete_input_dict": data}, original_response=response_json, ) """ response { 'object': "list", 'data': [ ] 'model', 'usage' } """ embeddings = response_json["embeddings"] output_data = [] for k, embedding_list in embeddings.items(): for idx, embedding in enumerate(embedding_list): output_data.append( {"object": "embedding", "index": idx, "embedding": embedding} ) model_response.object = "list" model_response.data = output_data model_response.model = model input_tokens = 0 for text in input: input_tokens += len(encoding.encode(text)) setattr( model_response, "usage", self._calculate_usage(input, encoding, response_json.get("meta", {})), ) return model_response def transform_embedding_response( self, model: str, raw_response: httpx.Response, model_response: EmbeddingResponse, logging_obj: LiteLLMLoggingObj, api_key: Optional[str], request_data: dict, optional_params: dict, litellm_params: dict, ) -> EmbeddingResponse: return self._transform_response( response=raw_response, api_key=api_key, logging_obj=logging_obj, data=request_data, model_response=model_response, model=model, encoding=litellm.encoding, input=logging_obj.model_call_details["input"], ) def get_error_class( self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers] ) -> BaseLLMException: return CohereError( status_code=status_code, message=error_message, )