import os import sys import pytest import asyncio from typing import Optional, cast from unittest.mock import patch, AsyncMock sys.path.insert(0, os.path.abspath("../..")) import litellm from litellm.integrations.custom_logger import CustomLogger import json from litellm.types.utils import StandardLoggingPayload from litellm.types.llms.openai import ( ResponseCompletedEvent, ResponsesAPIResponse, ResponseTextConfig, ResponseAPIUsage, IncompleteDetails, ) from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler from base_responses_api import BaseResponsesAPITest, validate_responses_api_response class TestOpenAIResponsesAPITest(BaseResponsesAPITest): def get_base_completion_call_args(self): return { "model": "openai/gpt-4o", } class TestCustomLogger(CustomLogger): def __init__( self, ): self.standard_logging_object: Optional[StandardLoggingPayload] = None async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): print("in async_log_success_event") print("kwargs=", json.dumps(kwargs, indent=4, default=str)) self.standard_logging_object = kwargs["standard_logging_object"] pass def validate_standard_logging_payload( slp: StandardLoggingPayload, response: ResponsesAPIResponse, request_model: str ): """ Validate that a StandardLoggingPayload object matches the expected response Args: slp (StandardLoggingPayload): The standard logging payload object to validate response (dict): The litellm response to compare against request_model (str): The model name that was requested """ # Validate payload exists assert slp is not None, "Standard logging payload should not be None" # Validate token counts print("response=", json.dumps(response, indent=4, default=str)) assert ( slp["prompt_tokens"] == response["usage"]["input_tokens"] ), "Prompt tokens mismatch" assert ( slp["completion_tokens"] == response["usage"]["output_tokens"] ), "Completion tokens mismatch" assert ( slp["total_tokens"] == response["usage"]["input_tokens"] + response["usage"]["output_tokens"] ), "Total tokens mismatch" # Validate spend and response metadata assert slp["response_cost"] > 0, "Response cost should be greater than 0" assert slp["id"] == response["id"], "Response ID mismatch" assert slp["model"] == request_model, "Model name mismatch" # Validate messages assert slp["messages"] == [{"content": "hi", "role": "user"}], "Messages mismatch" # Validate complete response structure validate_responses_match(slp["response"], response) @pytest.mark.asyncio async def test_basic_openai_responses_api_streaming_with_logging(): litellm._turn_on_debug() litellm.set_verbose = True test_custom_logger = TestCustomLogger() litellm.callbacks = [test_custom_logger] request_model = "gpt-4o" response = await litellm.aresponses( model=request_model, input="hi", stream=True, ) final_response: Optional[ResponseCompletedEvent] = None async for event in response: if event.type == "response.completed": final_response = event print("litellm response=", json.dumps(event, indent=4, default=str)) print("sleeping for 2 seconds...") await asyncio.sleep(2) print( "standard logging payload=", json.dumps(test_custom_logger.standard_logging_object, indent=4, default=str), ) assert final_response is not None assert test_custom_logger.standard_logging_object is not None validate_standard_logging_payload( slp=test_custom_logger.standard_logging_object, response=final_response.response, request_model=request_model, ) def validate_responses_match(slp_response, litellm_response): """Validate that the standard logging payload OpenAI response matches the litellm response""" # Validate core fields assert slp_response["id"] == litellm_response["id"], "ID mismatch" assert slp_response["model"] == litellm_response["model"], "Model mismatch" assert ( slp_response["created_at"] == litellm_response["created_at"] ), "Created at mismatch" # Validate usage assert ( slp_response["usage"]["input_tokens"] == litellm_response["usage"]["input_tokens"] ), "Input tokens mismatch" assert ( slp_response["usage"]["output_tokens"] == litellm_response["usage"]["output_tokens"] ), "Output tokens mismatch" assert ( slp_response["usage"]["total_tokens"] == litellm_response["usage"]["total_tokens"] ), "Total tokens mismatch" # Validate output/messages assert len(slp_response["output"]) == len( litellm_response["output"] ), "Output length mismatch" for slp_msg, litellm_msg in zip(slp_response["output"], litellm_response["output"]): assert slp_msg["role"] == litellm_msg.role, "Message role mismatch" # Access the content's text field for the litellm response litellm_content = litellm_msg.content[0].text if litellm_msg.content else "" assert ( slp_msg["content"][0]["text"] == litellm_content ), f"Message content mismatch. Expected {litellm_content}, Got {slp_msg['content']}" assert slp_msg["status"] == litellm_msg.status, "Message status mismatch" @pytest.mark.asyncio async def test_basic_openai_responses_api_non_streaming_with_logging(): litellm._turn_on_debug() litellm.set_verbose = True test_custom_logger = TestCustomLogger() litellm.callbacks = [test_custom_logger] request_model = "gpt-4o" response = await litellm.aresponses( model=request_model, input="hi", ) print("litellm response=", json.dumps(response, indent=4, default=str)) print("response hidden params=", response._hidden_params) print("sleeping for 2 seconds...") await asyncio.sleep(2) print( "standard logging payload=", json.dumps(test_custom_logger.standard_logging_object, indent=4, default=str), ) assert response is not None assert test_custom_logger.standard_logging_object is not None validate_standard_logging_payload( test_custom_logger.standard_logging_object, response, request_model ) def validate_stream_event(event): """ Validate that a streaming event from litellm.responses() or litellm.aresponses() with stream=True conforms to the expected structure based on its event type. Args: event: The streaming event object to validate Raises: AssertionError: If the event doesn't match the expected structure for its type """ # Common validation for all event types assert hasattr(event, "type"), "Event should have a 'type' attribute" # Type-specific validation if event.type == "response.created" or event.type == "response.in_progress": assert hasattr( event, "response" ), f"{event.type} event should have a 'response' attribute" validate_responses_api_response(event.response, final_chunk=False) elif event.type == "response.completed": assert hasattr( event, "response" ), "response.completed event should have a 'response' attribute" validate_responses_api_response(event.response, final_chunk=True) # Usage is guaranteed only on the completed event assert ( "usage" in event.response ), "response.completed event should have usage information" print("Usage in event.response=", event.response["usage"]) assert isinstance(event.response["usage"], ResponseAPIUsage) elif event.type == "response.failed" or event.type == "response.incomplete": assert hasattr( event, "response" ), f"{event.type} event should have a 'response' attribute" elif ( event.type == "response.output_item.added" or event.type == "response.output_item.done" ): assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "item" ), f"{event.type} event should have an 'item' attribute" elif ( event.type == "response.content_part.added" or event.type == "response.content_part.done" ): assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "part" ), f"{event.type} event should have a 'part' attribute" elif event.type == "response.output_text.delta": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "delta" ), f"{event.type} event should have a 'delta' attribute" elif event.type == "response.output_text.annotation.added": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "annotation_index" ), f"{event.type} event should have an 'annotation_index' attribute" assert hasattr( event, "annotation" ), f"{event.type} event should have an 'annotation' attribute" elif event.type == "response.output_text.done": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "text" ), f"{event.type} event should have a 'text' attribute" elif event.type == "response.refusal.delta": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "delta" ), f"{event.type} event should have a 'delta' attribute" elif event.type == "response.refusal.done": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "content_index" ), f"{event.type} event should have a 'content_index' attribute" assert hasattr( event, "refusal" ), f"{event.type} event should have a 'refusal' attribute" elif event.type == "response.function_call_arguments.delta": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "delta" ), f"{event.type} event should have a 'delta' attribute" elif event.type == "response.function_call_arguments.done": assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "arguments" ), f"{event.type} event should have an 'arguments' attribute" elif event.type in [ "response.file_search_call.in_progress", "response.file_search_call.searching", "response.file_search_call.completed", "response.web_search_call.in_progress", "response.web_search_call.searching", "response.web_search_call.completed", ]: assert hasattr( event, "output_index" ), f"{event.type} event should have an 'output_index' attribute" assert hasattr( event, "item_id" ), f"{event.type} event should have an 'item_id' attribute" elif event.type == "error": assert hasattr( event, "message" ), "Error event should have a 'message' attribute" return True # Return True if validation passes @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_openai_responses_api_streaming_validation(sync_mode): """Test that validates each streaming event from the responses API""" litellm._turn_on_debug() event_types_seen = set() if sync_mode: response = litellm.responses( model="gpt-4o", input="Tell me about artificial intelligence in 3 sentences.", stream=True, ) for event in response: print(f"Validating event type: {event.type}") validate_stream_event(event) event_types_seen.add(event.type) else: response = await litellm.aresponses( model="gpt-4o", input="Tell me about artificial intelligence in 3 sentences.", stream=True, ) async for event in response: print(f"Validating event type: {event.type}") validate_stream_event(event) event_types_seen.add(event.type) # At minimum, we should see these core event types required_events = {"response.created", "response.completed"} missing_events = required_events - event_types_seen assert not missing_events, f"Missing required event types: {missing_events}" print(f"Successfully validated all event types: {event_types_seen}") @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_openai_responses_litellm_router(sync_mode): """ Test the OpenAI responses API with LiteLLM Router in both sync and async modes """ litellm._turn_on_debug() router = litellm.Router( model_list=[ { "model_name": "gpt4o-special-alias", "litellm_params": { "model": "gpt-4o", "api_key": os.getenv("OPENAI_API_KEY"), }, } ] ) # Call the handler if sync_mode: response = router.responses( model="gpt4o-special-alias", input="Hello, can you tell me a short joke?", max_output_tokens=100, ) print("SYNC MODE RESPONSE=", response) else: response = await router.aresponses( model="gpt4o-special-alias", input="Hello, can you tell me a short joke?", max_output_tokens=100, ) print( f"Router {'sync' if sync_mode else 'async'} response=", json.dumps(response, indent=4, default=str), ) # Use the helper function to validate the response validate_responses_api_response(response, final_chunk=True) return response @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.asyncio async def test_openai_responses_litellm_router_streaming(sync_mode): """ Test the OpenAI responses API with streaming through LiteLLM Router """ litellm._turn_on_debug() router = litellm.Router( model_list=[ { "model_name": "gpt4o-special-alias", "litellm_params": { "model": "gpt-4o", "api_key": os.getenv("OPENAI_API_KEY"), }, } ] ) event_types_seen = set() if sync_mode: response = router.responses( model="gpt4o-special-alias", input="Tell me about artificial intelligence in 2 sentences.", stream=True, ) for event in response: print(f"Validating event type: {event.type}") validate_stream_event(event) event_types_seen.add(event.type) else: response = await router.aresponses( model="gpt4o-special-alias", input="Tell me about artificial intelligence in 2 sentences.", stream=True, ) async for event in response: print(f"Validating event type: {event.type}") validate_stream_event(event) event_types_seen.add(event.type) # At minimum, we should see these core event types required_events = {"response.created", "response.completed"} missing_events = required_events - event_types_seen assert not missing_events, f"Missing required event types: {missing_events}" print(f"Successfully validated all event types: {event_types_seen}") @pytest.mark.asyncio async def test_openai_responses_litellm_router_no_metadata(): """ Test that metadata is not passed through when using the Router for responses API """ mock_response = { "id": "resp_123", "object": "response", "created_at": 1741476542, "status": "completed", "model": "gpt-4o", "output": [ { "type": "message", "id": "msg_123", "status": "completed", "role": "assistant", "content": [ {"type": "output_text", "text": "Hello world!", "annotations": []} ], } ], "parallel_tool_calls": True, "usage": { "input_tokens": 10, "output_tokens": 20, "total_tokens": 30, "output_tokens_details": {"reasoning_tokens": 0}, }, "text": {"format": {"type": "text"}}, # Adding all required fields "error": None, "incomplete_details": None, "instructions": None, "metadata": {}, "temperature": 1.0, "tool_choice": "auto", "tools": [], "top_p": 1.0, "max_output_tokens": None, "previous_response_id": None, "reasoning": {"effort": None, "summary": None}, "truncation": "disabled", "user": None, } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = str(json_data) def json(self): # Changed from async to sync return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() router = litellm.Router( model_list=[ { "model_name": "gpt4o-special-alias", "litellm_params": { "model": "gpt-4o", "api_key": "fake-key", }, } ] ) # Call the handler with metadata await router.aresponses( model="gpt4o-special-alias", input="Hello, can you tell me a short joke?", ) # Check the request body request_body = mock_post.call_args.kwargs["json"] print("Request body:", json.dumps(request_body, indent=4)) # Assert metadata is not in the request assert ( "metadata" not in request_body ), "metadata should not be in the request body" mock_post.assert_called_once() @pytest.mark.asyncio async def test_openai_responses_litellm_router_with_metadata(): """ Test that metadata is correctly passed through when explicitly provided to the Router for responses API """ test_metadata = { "user_id": "123", "conversation_id": "abc", "custom_field": "test_value", } mock_response = { "id": "resp_123", "object": "response", "created_at": 1741476542, "status": "completed", "model": "gpt-4o", "output": [ { "type": "message", "id": "msg_123", "status": "completed", "role": "assistant", "content": [ {"type": "output_text", "text": "Hello world!", "annotations": []} ], } ], "parallel_tool_calls": True, "usage": { "input_tokens": 10, "output_tokens": 20, "total_tokens": 30, "output_tokens_details": {"reasoning_tokens": 0}, }, "text": {"format": {"type": "text"}}, "error": None, "incomplete_details": None, "instructions": None, "metadata": test_metadata, # Include the test metadata in response "temperature": 1.0, "tool_choice": "auto", "tools": [], "top_p": 1.0, "max_output_tokens": None, "previous_response_id": None, "reasoning": {"effort": None, "summary": None}, "truncation": "disabled", "user": None, } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = str(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() router = litellm.Router( model_list=[ { "model_name": "gpt4o-special-alias", "litellm_params": { "model": "gpt-4o", "api_key": "fake-key", }, } ] ) # Call the handler with metadata await router.aresponses( model="gpt4o-special-alias", input="Hello, can you tell me a short joke?", metadata=test_metadata, ) # Check the request body request_body = mock_post.call_args.kwargs["json"] print("Request body:", json.dumps(request_body, indent=4)) # Assert metadata matches exactly what was passed assert ( request_body["metadata"] == test_metadata ), "metadata in request body should match what was passed" mock_post.assert_called_once() def test_bad_request_bad_param_error(): """Raise a BadRequestError when an invalid parameter value is provided""" try: litellm.responses(model="gpt-4o", input="This should fail", temperature=2000) pytest.fail("Expected BadRequestError but no exception was raised") except litellm.BadRequestError as e: print(f"Exception raised: {e}") print(f"Exception type: {type(e)}") print(f"Exception args: {e.args}") print(f"Exception details: {e.__dict__}") except Exception as e: pytest.fail(f"Unexpected exception raised: {e}") @pytest.mark.asyncio() async def test_async_bad_request_bad_param_error(): """Raise a BadRequestError when an invalid parameter value is provided""" try: await litellm.aresponses( model="gpt-4o", input="This should fail", temperature=2000 ) pytest.fail("Expected BadRequestError but no exception was raised") except litellm.BadRequestError as e: print(f"Exception raised: {e}") print(f"Exception type: {type(e)}") print(f"Exception args: {e.args}") print(f"Exception details: {e.__dict__}") except Exception as e: pytest.fail(f"Unexpected exception raised: {e}") @pytest.mark.asyncio @pytest.mark.parametrize("sync_mode", [True, False]) async def test_openai_o1_pro_response_api(sync_mode): """ Test that LiteLLM correctly handles an incomplete response from OpenAI's o1-pro model due to reaching max_output_tokens limit. """ # Mock response from o1-pro mock_response = { "id": "resp_67dc3dd77b388190822443a85252da5a0e13d8bdc0e28d88", "object": "response", "created_at": 1742486999, "status": "incomplete", "error": None, "incomplete_details": {"reason": "max_output_tokens"}, "instructions": None, "max_output_tokens": 20, "model": "o1-pro-2025-03-19", "output": [ { "type": "reasoning", "id": "rs_67dc3de50f64819097450ed50a33d5f90e13d8bdc0e28d88", "summary": [], } ], "parallel_tool_calls": True, "previous_response_id": None, "reasoning": {"effort": "medium", "generate_summary": None}, "store": True, "temperature": 1.0, "text": {"format": {"type": "text"}}, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 73, "input_tokens_details": {"cached_tokens": 0}, "output_tokens": 20, "output_tokens_details": {"reasoning_tokens": 0}, "total_tokens": 93, }, "user": None, "metadata": {}, } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): # Changed from async to sync return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() litellm.set_verbose = True # Call o1-pro with max_output_tokens=20 response = await litellm.aresponses( model="openai/o1-pro", input="Write a detailed essay about artificial intelligence and its impact on society", max_output_tokens=20, ) # Verify the request was made correctly mock_post.assert_called_once() request_body = mock_post.call_args.kwargs["json"] assert request_body["model"] == "o1-pro" assert request_body["max_output_tokens"] == 20 # Validate the response print("Response:", json.dumps(response, indent=4, default=str)) # Check that the response has the expected structure assert response["id"] is not None assert response["status"] == "incomplete" assert response["incomplete_details"].reason == "max_output_tokens" assert response["max_output_tokens"] == 20 # Validate usage information assert response["usage"]["input_tokens"] == 73 assert response["usage"]["output_tokens"] == 20 assert response["usage"]["total_tokens"] == 93 # Validate that the response is properly identified as incomplete validate_responses_api_response(response, final_chunk=True) @pytest.mark.asyncio @pytest.mark.parametrize("sync_mode", [True, False]) async def test_openai_o1_pro_response_api_streaming(sync_mode): """ Test that LiteLLM correctly handles an incomplete response from OpenAI's o1-pro model due to reaching max_output_tokens limit in both sync and async streaming modes. """ # Mock response from o1-pro mock_response = { "id": "resp_67dc3dd77b388190822443a85252da5a0e13d8bdc0e28d88", "object": "response", "created_at": 1742486999, "status": "incomplete", "error": None, "incomplete_details": {"reason": "max_output_tokens"}, "instructions": None, "max_output_tokens": 20, "model": "o1-pro-2025-03-19", "output": [ { "type": "reasoning", "id": "rs_67dc3de50f64819097450ed50a33d5f90e13d8bdc0e28d88", "summary": [], } ], "parallel_tool_calls": True, "previous_response_id": None, "reasoning": {"effort": "medium", "generate_summary": None}, "store": True, "temperature": 1.0, "text": {"format": {"type": "text"}}, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 73, "input_tokens_details": {"cached_tokens": 0}, "output_tokens": 20, "output_tokens_details": {"reasoning_tokens": 0}, "total_tokens": 93, }, "user": None, "metadata": {}, } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() litellm.set_verbose = True # Verify the request was made correctly if sync_mode: # For sync mode, we need to patch the sync HTTP handler with patch( "litellm.llms.custom_httpx.http_handler.HTTPHandler.post", return_value=MockResponse(mock_response, 200), ) as mock_sync_post: response = litellm.responses( model="openai/o1-pro", input="Write a detailed essay about artificial intelligence and its impact on society", max_output_tokens=20, stream=True, ) # Process the sync stream event_count = 0 for event in response: print( f"Sync litellm response #{event_count}:", json.dumps(event, indent=4, default=str), ) event_count += 1 # Verify the sync request was made correctly mock_sync_post.assert_called_once() request_body = mock_sync_post.call_args.kwargs["json"] assert request_body["model"] == "o1-pro" assert request_body["max_output_tokens"] == 20 assert "stream" not in request_body else: # For async mode response = await litellm.aresponses( model="openai/o1-pro", input="Write a detailed essay about artificial intelligence and its impact on society", max_output_tokens=20, stream=True, ) # Process the async stream event_count = 0 async for event in response: print( f"Async litellm response #{event_count}:", json.dumps(event, indent=4, default=str), ) event_count += 1 # Verify the async request was made correctly mock_post.assert_called_once() request_body = mock_post.call_args.kwargs["json"] assert request_body["model"] == "o1-pro" assert request_body["max_output_tokens"] == 20 assert "stream" not in request_body def test_basic_computer_use_preview_tool_call(): """ Test that LiteLLM correctly handles a computer_use_preview tool call where the environment is set to "linux" linux is an unsupported environment for the computer_use_preview tool, but litellm users should still be able to pass it to openai """ # Mock response from OpenAI mock_response = { "id": "resp_67dc3dd77b388190822443a85252da5a0e13d8bdc0e28d88", "object": "response", "created_at": 1742486999, "status": "incomplete", "error": None, "incomplete_details": {"reason": "max_output_tokens"}, "instructions": None, "max_output_tokens": 20, "model": "o1-pro-2025-03-19", "output": [ { "type": "reasoning", "id": "rs_67dc3de50f64819097450ed50a33d5f90e13d8bdc0e28d88", "summary": [], } ], "parallel_tool_calls": True, "previous_response_id": None, "reasoning": {"effort": "medium", "generate_summary": None}, "store": True, "temperature": 1.0, "text": {"format": {"type": "text"}}, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 73, "input_tokens_details": {"cached_tokens": 0}, "output_tokens": 20, "output_tokens_details": {"reasoning_tokens": 0}, "total_tokens": 93, }, "user": None, "metadata": {}, } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.HTTPHandler.post", return_value=MockResponse(mock_response, 200), ) as mock_post: litellm._turn_on_debug() litellm.set_verbose = True # Call the responses API with computer_use_preview tool response = litellm.responses( model="openai/computer-use-preview", tools=[{ "type": "computer_use_preview", "display_width": 1024, "display_height": 768, "environment": "linux" # other possible values: "mac", "windows", "ubuntu" }], input="Check the latest OpenAI news on bing.com.", reasoning={"summary": "concise"}, truncation="auto" ) # Verify the request was made correctly mock_post.assert_called_once() request_body = mock_post.call_args.kwargs["json"] # Validate the request structure assert request_body["model"] == "computer-use-preview" assert len(request_body["tools"]) == 1 assert request_body["tools"][0]["type"] == "computer_use_preview" assert request_body["tools"][0]["display_width"] == 1024 assert request_body["tools"][0]["display_height"] == 768 assert request_body["tools"][0]["environment"] == "linux" # Check that reasoning was passed correctly assert request_body["reasoning"]["summary"] == "concise" assert request_body["truncation"] == "auto" # Validate the input format assert isinstance(request_body["input"], str) assert request_body["input"] == "Check the latest OpenAI news on bing.com." def test_mcp_tools_with_responses_api(): litellm._turn_on_debug() MCP_TOOLS = [ { "type": "mcp", "server_label": "deepwiki", "server_url": "https://mcp.deepwiki.com/mcp", "allowed_tools": ["ask_question"] } ] MODEL = "openai/gpt-4.1" USER_QUERY = "What transport protocols does the 2025-03-26 version of the MCP spec (modelcontextprotocol/modelcontextprotocol) support?" ######################################################### # Step 1: OpenAI will use MCP LIST, and return a list of MCP calls for our approval response = litellm.responses( model=MODEL, tools=MCP_TOOLS, input=USER_QUERY ) print(response) response = cast(ResponsesAPIResponse, response) mcp_approval_id: Optional[str] for output in response.output: if output.type == "mcp_approval_request": mcp_approval_id = output.id break # Step 2: Send followup with approval for the MCP call response_with_mcp_call = litellm.responses( model=MODEL, tools=MCP_TOOLS, input=[ { "type": "mcp_approval_response", "approve": True, "approval_request_id": mcp_approval_id } ], previous_response_id=response.id, ) print(response_with_mcp_call)