import os
from typing import List, Literal
ROUTER_MAX_FALLBACKS = int(os.getenv("ROUTER_MAX_FALLBACKS", 5))
DEFAULT_BATCH_SIZE = int(os.getenv("DEFAULT_BATCH_SIZE", 512))
DEFAULT_FLUSH_INTERVAL_SECONDS = int(os.getenv("DEFAULT_FLUSH_INTERVAL_SECONDS", 5))
DEFAULT_S3_FLUSH_INTERVAL_SECONDS = int(
os.getenv("DEFAULT_S3_FLUSH_INTERVAL_SECONDS", 10)
)
DEFAULT_S3_BATCH_SIZE = int(os.getenv("DEFAULT_S3_BATCH_SIZE", 512))
DEFAULT_MAX_RETRIES = int(os.getenv("DEFAULT_MAX_RETRIES", 2))
DEFAULT_MAX_RECURSE_DEPTH = int(os.getenv("DEFAULT_MAX_RECURSE_DEPTH", 100))
DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER = int(
os.getenv("DEFAULT_MAX_RECURSE_DEPTH_SENSITIVE_DATA_MASKER", 10)
)
DEFAULT_FAILURE_THRESHOLD_PERCENT = float(
os.getenv("DEFAULT_FAILURE_THRESHOLD_PERCENT", 0.5)
) # default cooldown a deployment if 50% of requests fail in a given minute
DEFAULT_MAX_TOKENS = int(os.getenv("DEFAULT_MAX_TOKENS", 4096))
DEFAULT_ALLOWED_FAILS = int(os.getenv("DEFAULT_ALLOWED_FAILS", 3))
DEFAULT_REDIS_SYNC_INTERVAL = int(os.getenv("DEFAULT_REDIS_SYNC_INTERVAL", 1))
DEFAULT_COOLDOWN_TIME_SECONDS = int(os.getenv("DEFAULT_COOLDOWN_TIME_SECONDS", 5))
DEFAULT_REPLICATE_POLLING_RETRIES = int(
os.getenv("DEFAULT_REPLICATE_POLLING_RETRIES", 5)
)
DEFAULT_REPLICATE_POLLING_DELAY_SECONDS = int(
os.getenv("DEFAULT_REPLICATE_POLLING_DELAY_SECONDS", 1)
)
DEFAULT_IMAGE_TOKEN_COUNT = int(os.getenv("DEFAULT_IMAGE_TOKEN_COUNT", 250))
DEFAULT_IMAGE_WIDTH = int(os.getenv("DEFAULT_IMAGE_WIDTH", 300))
DEFAULT_IMAGE_HEIGHT = int(os.getenv("DEFAULT_IMAGE_HEIGHT", 300))
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int(
os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 1024)
) # 1MB = 1024KB
SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD = int(
os.getenv("SINGLE_DEPLOYMENT_TRAFFIC_FAILURE_THRESHOLD", 1000)
) # Minimum number of requests to consider "reasonable traffic". Used for single-deployment cooldown logic.
DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET = int(
os.getenv("DEFAULT_REASONING_EFFORT_DISABLE_THINKING_BUDGET", 0)
)
DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET = int(
os.getenv("DEFAULT_REASONING_EFFORT_LOW_THINKING_BUDGET", 1024)
)
DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET = int(
os.getenv("DEFAULT_REASONING_EFFORT_MEDIUM_THINKING_BUDGET", 2048)
)
DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET = int(
os.getenv("DEFAULT_REASONING_EFFORT_HIGH_THINKING_BUDGET", 4096)
)
MAX_TOKEN_TRIMMING_ATTEMPTS = int(
os.getenv("MAX_TOKEN_TRIMMING_ATTEMPTS", 10)
) # Maximum number of attempts to trim the message
########## Networking constants ##############################################################
_DEFAULT_TTL_FOR_HTTPX_CLIENTS = 3600 # 1 hour, re-use the same httpx client for 1 hour
########### v2 Architecture constants for managing writing updates to the database ###########
REDIS_UPDATE_BUFFER_KEY = "litellm_spend_update_buffer"
REDIS_DAILY_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_spend_update_buffer"
REDIS_DAILY_TEAM_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_team_spend_update_buffer"
REDIS_DAILY_TAG_SPEND_UPDATE_BUFFER_KEY = "litellm_daily_tag_spend_update_buffer"
MAX_REDIS_BUFFER_DEQUEUE_COUNT = int(os.getenv("MAX_REDIS_BUFFER_DEQUEUE_COUNT", 100))
MAX_SIZE_IN_MEMORY_QUEUE = int(os.getenv("MAX_SIZE_IN_MEMORY_QUEUE", 10000))
MAX_IN_MEMORY_QUEUE_FLUSH_COUNT = int(
os.getenv("MAX_IN_MEMORY_QUEUE_FLUSH_COUNT", 1000)
)
###############################################################################################
MINIMUM_PROMPT_CACHE_TOKEN_COUNT = int(
os.getenv("MINIMUM_PROMPT_CACHE_TOKEN_COUNT", 1024)
) # minimum number of tokens to cache a prompt by Anthropic
DEFAULT_TRIM_RATIO = float(
os.getenv("DEFAULT_TRIM_RATIO", 0.75)
) # default ratio of tokens to trim from the end of a prompt
HOURS_IN_A_DAY = int(os.getenv("HOURS_IN_A_DAY", 24))
DAYS_IN_A_WEEK = int(os.getenv("DAYS_IN_A_WEEK", 7))
DAYS_IN_A_MONTH = int(os.getenv("DAYS_IN_A_MONTH", 28))
DAYS_IN_A_YEAR = int(os.getenv("DAYS_IN_A_YEAR", 365))
REPLICATE_MODEL_NAME_WITH_ID_LENGTH = int(
os.getenv("REPLICATE_MODEL_NAME_WITH_ID_LENGTH", 64)
)
#### TOKEN COUNTING ####
FUNCTION_DEFINITION_TOKEN_COUNT = int(os.getenv("FUNCTION_DEFINITION_TOKEN_COUNT", 9))
SYSTEM_MESSAGE_TOKEN_COUNT = int(os.getenv("SYSTEM_MESSAGE_TOKEN_COUNT", 4))
TOOL_CHOICE_OBJECT_TOKEN_COUNT = int(os.getenv("TOOL_CHOICE_OBJECT_TOKEN_COUNT", 4))
DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT = int(
os.getenv("DEFAULT_MOCK_RESPONSE_PROMPT_TOKEN_COUNT", 10)
)
DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT = int(
os.getenv("DEFAULT_MOCK_RESPONSE_COMPLETION_TOKEN_COUNT", 20)
)
MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES = int(
os.getenv("MAX_SHORT_SIDE_FOR_IMAGE_HIGH_RES", 768)
)
MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES = int(
os.getenv("MAX_LONG_SIDE_FOR_IMAGE_HIGH_RES", 2000)
)
MAX_TILE_WIDTH = int(os.getenv("MAX_TILE_WIDTH", 512))
MAX_TILE_HEIGHT = int(os.getenv("MAX_TILE_HEIGHT", 512))
OPENAI_FILE_SEARCH_COST_PER_1K_CALLS = float(
os.getenv("OPENAI_FILE_SEARCH_COST_PER_1K_CALLS", 2.5 / 1000)
)
MIN_NON_ZERO_TEMPERATURE = float(os.getenv("MIN_NON_ZERO_TEMPERATURE", 0.0001))
#### RELIABILITY ####
REPEATED_STREAMING_CHUNK_LIMIT = int(
os.getenv("REPEATED_STREAMING_CHUNK_LIMIT", 100)
) # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
DEFAULT_MAX_LRU_CACHE_SIZE = int(os.getenv("DEFAULT_MAX_LRU_CACHE_SIZE", 16))
INITIAL_RETRY_DELAY = float(os.getenv("INITIAL_RETRY_DELAY", 0.5))
MAX_RETRY_DELAY = float(os.getenv("MAX_RETRY_DELAY", 8.0))
JITTER = float(os.getenv("JITTER", 0.75))
DEFAULT_IN_MEMORY_TTL = int(
os.getenv("DEFAULT_IN_MEMORY_TTL", 5)
) # default time to live for the in-memory cache
DEFAULT_POLLING_INTERVAL = float(
os.getenv("DEFAULT_POLLING_INTERVAL", 0.03)
) # default polling interval for the scheduler
AZURE_OPERATION_POLLING_TIMEOUT = int(os.getenv("AZURE_OPERATION_POLLING_TIMEOUT", 120))
REDIS_SOCKET_TIMEOUT = float(os.getenv("REDIS_SOCKET_TIMEOUT", 0.1))
REDIS_CONNECTION_POOL_TIMEOUT = int(os.getenv("REDIS_CONNECTION_POOL_TIMEOUT", 5))
NON_LLM_CONNECTION_TIMEOUT = int(
os.getenv("NON_LLM_CONNECTION_TIMEOUT", 15)
) # timeout for adjacent services (e.g. jwt auth)
MAX_EXCEPTION_MESSAGE_LENGTH = int(os.getenv("MAX_EXCEPTION_MESSAGE_LENGTH", 2000))
BEDROCK_MAX_POLICY_SIZE = int(os.getenv("BEDROCK_MAX_POLICY_SIZE", 75))
REPLICATE_POLLING_DELAY_SECONDS = float(
os.getenv("REPLICATE_POLLING_DELAY_SECONDS", 0.5)
)
DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS = int(
os.getenv("DEFAULT_ANTHROPIC_CHAT_MAX_TOKENS", 4096)
)
TOGETHER_AI_4_B = int(os.getenv("TOGETHER_AI_4_B", 4))
TOGETHER_AI_8_B = int(os.getenv("TOGETHER_AI_8_B", 8))
TOGETHER_AI_21_B = int(os.getenv("TOGETHER_AI_21_B", 21))
TOGETHER_AI_41_B = int(os.getenv("TOGETHER_AI_41_B", 41))
TOGETHER_AI_80_B = int(os.getenv("TOGETHER_AI_80_B", 80))
TOGETHER_AI_110_B = int(os.getenv("TOGETHER_AI_110_B", 110))
TOGETHER_AI_EMBEDDING_150_M = int(os.getenv("TOGETHER_AI_EMBEDDING_150_M", 150))
TOGETHER_AI_EMBEDDING_350_M = int(os.getenv("TOGETHER_AI_EMBEDDING_350_M", 350))
QDRANT_SCALAR_QUANTILE = float(os.getenv("QDRANT_SCALAR_QUANTILE", 0.99))
QDRANT_VECTOR_SIZE = int(os.getenv("QDRANT_VECTOR_SIZE", 1536))
CACHED_STREAMING_CHUNK_DELAY = float(os.getenv("CACHED_STREAMING_CHUNK_DELAY", 0.02))
MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB = int(
os.getenv("MAX_SIZE_PER_ITEM_IN_MEMORY_CACHE_IN_KB", 512)
)
DEFAULT_MAX_TOKENS_FOR_TRITON = int(os.getenv("DEFAULT_MAX_TOKENS_FOR_TRITON", 2000))
#### Networking settings ####
request_timeout: float = float(os.getenv("REQUEST_TIMEOUT", 6000)) # time in seconds
STREAM_SSE_DONE_STRING: str = "[DONE]"
STREAM_SSE_DATA_PREFIX: str = "data: "
### SPEND TRACKING ###
DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND = float(
os.getenv("DEFAULT_REPLICATE_GPU_PRICE_PER_SECOND", 0.001400)
) # price per second for a100 80GB
FIREWORKS_AI_56_B_MOE = int(os.getenv("FIREWORKS_AI_56_B_MOE", 56))
FIREWORKS_AI_176_B_MOE = int(os.getenv("FIREWORKS_AI_176_B_MOE", 176))
FIREWORKS_AI_4_B = int(os.getenv("FIREWORKS_AI_4_B", 4))
FIREWORKS_AI_16_B = int(os.getenv("FIREWORKS_AI_16_B", 16))
FIREWORKS_AI_80_B = int(os.getenv("FIREWORKS_AI_80_B", 80))
#### Logging callback constants ####
REDACTED_BY_LITELM_STRING = "REDACTED_BY_LITELM"
MAX_LANGFUSE_INITIALIZED_CLIENTS = int(
os.getenv("MAX_LANGFUSE_INITIALIZED_CLIENTS", 50)
)
DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE = os.getenv(
"DD_TRACER_STREAMING_CHUNK_YIELD_RESOURCE", "streaming.chunk.yield"
)
############### LLM Provider Constants ###############
### ANTHROPIC CONSTANTS ###
ANTHROPIC_WEB_SEARCH_TOOL_MAX_USES = {
"low": 1,
"medium": 5,
"high": 10,
}
DEFAULT_IMAGE_ENDPOINT_MODEL = "dall-e-2"
LITELLM_CHAT_PROVIDERS = [
"openai",
"openai_like",
"xai",
"custom_openai",
"text-completion-openai",
"cohere",
"cohere_chat",
"clarifai",
"anthropic",
"anthropic_text",
"replicate",
"huggingface",
"together_ai",
"datarobot",
"openrouter",
"vertex_ai",
"vertex_ai_beta",
"gemini",
"ai21",
"baseten",
"azure",
"azure_text",
"azure_ai",
"sagemaker",
"sagemaker_chat",
"bedrock",
"vllm",
"nlp_cloud",
"petals",
"oobabooga",
"ollama",
"ollama_chat",
"deepinfra",
"perplexity",
"mistral",
"groq",
"nvidia_nim",
"cerebras",
"ai21_chat",
"volcengine",
"codestral",
"text-completion-codestral",
"deepseek",
"sambanova",
"maritalk",
"cloudflare",
"fireworks_ai",
"friendliai",
"watsonx",
"watsonx_text",
"triton",
"predibase",
"databricks",
"empower",
"github",
"custom",
"litellm_proxy",
"hosted_vllm",
"llamafile",
"lm_studio",
"galadriel",
"novita",
"meta_llama",
"featherless_ai",
"nscale",
"nebius",
]
LITELLM_EMBEDDING_PROVIDERS_SUPPORTING_INPUT_ARRAY_OF_TOKENS = [
"openai",
"azure",
"hosted_vllm",
"nebius",
]
OPENAI_CHAT_COMPLETION_PARAMS = [
"functions",
"function_call",
"temperature",
"temperature",
"top_p",
"n",
"stream",
"stream_options",
"stop",
"max_completion_tokens",
"modalities",
"prediction",
"audio",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"request_timeout",
"api_base",
"api_version",
"api_key",
"deployment_id",
"organization",
"base_url",
"default_headers",
"timeout",
"response_format",
"seed",
"tools",
"tool_choice",
"max_retries",
"parallel_tool_calls",
"logprobs",
"top_logprobs",
"reasoning_effort",
"extra_headers",
"thinking",
"web_search_options",
]
OPENAI_TRANSCRIPTION_PARAMS = [
"language",
"response_format",
"timestamp_granularities",
]
OPENAI_EMBEDDING_PARAMS = ["dimensions", "encoding_format", "user"]
DEFAULT_EMBEDDING_PARAM_VALUES = {
**{k: None for k in OPENAI_EMBEDDING_PARAMS},
"model": None,
"custom_llm_provider": "",
"input": None,
}
DEFAULT_CHAT_COMPLETION_PARAM_VALUES = {
"functions": None,
"function_call": None,
"temperature": None,
"top_p": None,
"n": None,
"stream": None,
"stream_options": None,
"stop": None,
"max_tokens": None,
"max_completion_tokens": None,
"modalities": None,
"prediction": None,
"audio": None,
"presence_penalty": None,
"frequency_penalty": None,
"logit_bias": None,
"user": None,
"model": None,
"custom_llm_provider": "",
"response_format": None,
"seed": None,
"tools": None,
"tool_choice": None,
"max_retries": None,
"logprobs": None,
"top_logprobs": None,
"extra_headers": None,
"api_version": None,
"parallel_tool_calls": None,
"drop_params": None,
"allowed_openai_params": None,
"additional_drop_params": None,
"messages": None,
"reasoning_effort": None,
"thinking": None,
"web_search_options": None,
}
openai_compatible_endpoints: List = [
"api.perplexity.ai",
"api.endpoints.anyscale.com/v1",
"api.deepinfra.com/v1/openai",
"api.mistral.ai/v1",
"codestral.mistral.ai/v1/chat/completions",
"codestral.mistral.ai/v1/fim/completions",
"api.groq.com/openai/v1",
"https://integrate.api.nvidia.com/v1",
"api.deepseek.com/v1",
"api.together.xyz/v1",
"app.empower.dev/api/v1",
"https://api.friendli.ai/serverless/v1",
"api.sambanova.ai/v1",
"api.x.ai/v1",
"api.galadriel.ai/v1",
"api.llama.com/compat/v1/",
"api.featherless.ai/v1",
"inference.api.nscale.com/v1",
"api.studio.nebius.ai/v1",
]
openai_compatible_providers: List = [
"anyscale",
"mistral",
"groq",
"nvidia_nim",
"cerebras",
"sambanova",
"ai21_chat",
"ai21",
"volcengine",
"codestral",
"deepseek",
"deepinfra",
"perplexity",
"xinference",
"xai",
"together_ai",
"fireworks_ai",
"empower",
"friendliai",
"azure_ai",
"github",
"litellm_proxy",
"hosted_vllm",
"llamafile",
"lm_studio",
"galadriel",
"novita",
"meta_llama",
"featherless_ai",
"nscale",
"nebius",
]
openai_text_completion_compatible_providers: List = (
[ # providers that support `/v1/completions`
"together_ai",
"fireworks_ai",
"hosted_vllm",
"meta_llama",
"llamafile",
"featherless_ai",
"nebius",
]
)
_openai_like_providers: List = [
"predibase",
"databricks",
"watsonx",
] # private helper. similar to openai but require some custom auth / endpoint handling, so can't use the openai sdk
# well supported replicate llms
replicate_models: List = [
# llama replicate supported LLMs
"replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
"a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
"meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db",
# Vicuna
"replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b",
"joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe",
# Flan T-5
"daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f",
# Others
"replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5",
"replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad",
]
clarifai_models: List = [
"clarifai/meta.Llama-3.Llama-3-8B-Instruct",
"clarifai/gcp.generate.gemma-1_1-7b-it",
"clarifai/mistralai.completion.mixtral-8x22B",
"clarifai/cohere.generate.command-r-plus",
"clarifai/databricks.drbx.dbrx-instruct",
"clarifai/mistralai.completion.mistral-large",
"clarifai/mistralai.completion.mistral-medium",
"clarifai/mistralai.completion.mistral-small",
"clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1",
"clarifai/gcp.generate.gemma-2b-it",
"clarifai/gcp.generate.gemma-7b-it",
"clarifai/deci.decilm.deciLM-7B-instruct",
"clarifai/mistralai.completion.mistral-7B-Instruct",
"clarifai/gcp.generate.gemini-pro",
"clarifai/anthropic.completion.claude-v1",
"clarifai/anthropic.completion.claude-instant-1_2",
"clarifai/anthropic.completion.claude-instant",
"clarifai/anthropic.completion.claude-v2",
"clarifai/anthropic.completion.claude-2_1",
"clarifai/meta.Llama-2.codeLlama-70b-Python",
"clarifai/meta.Llama-2.codeLlama-70b-Instruct",
"clarifai/openai.completion.gpt-3_5-turbo-instruct",
"clarifai/meta.Llama-2.llama2-7b-chat",
"clarifai/meta.Llama-2.llama2-13b-chat",
"clarifai/meta.Llama-2.llama2-70b-chat",
"clarifai/openai.chat-completion.gpt-4-turbo",
"clarifai/microsoft.text-generation.phi-2",
"clarifai/meta.Llama-2.llama2-7b-chat-vllm",
"clarifai/upstage.solar.solar-10_7b-instruct",
"clarifai/openchat.openchat.openchat-3_5-1210",
"clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B",
"clarifai/gcp.generate.text-bison",
"clarifai/meta.Llama-2.llamaGuard-7b",
"clarifai/fblgit.una-cybertron.una-cybertron-7b-v2",
"clarifai/openai.chat-completion.GPT-4",
"clarifai/openai.chat-completion.GPT-3_5-turbo",
"clarifai/ai21.complete.Jurassic2-Grande",
"clarifai/ai21.complete.Jurassic2-Grande-Instruct",
"clarifai/ai21.complete.Jurassic2-Jumbo-Instruct",
"clarifai/ai21.complete.Jurassic2-Jumbo",
"clarifai/ai21.complete.Jurassic2-Large",
"clarifai/cohere.generate.cohere-generate-command",
"clarifai/wizardlm.generate.wizardCoder-Python-34B",
"clarifai/wizardlm.generate.wizardLM-70B",
"clarifai/tiiuae.falcon.falcon-40b-instruct",
"clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat",
"clarifai/gcp.generate.code-gecko",
"clarifai/gcp.generate.code-bison",
"clarifai/mistralai.completion.mistral-7B-OpenOrca",
"clarifai/mistralai.completion.openHermes-2-mistral-7B",
"clarifai/wizardlm.generate.wizardLM-13B",
"clarifai/huggingface-research.zephyr.zephyr-7B-alpha",
"clarifai/wizardlm.generate.wizardCoder-15B",
"clarifai/microsoft.text-generation.phi-1_5",
"clarifai/databricks.Dolly-v2.dolly-v2-12b",
"clarifai/bigcode.code.StarCoder",
"clarifai/salesforce.xgen.xgen-7b-8k-instruct",
"clarifai/mosaicml.mpt.mpt-7b-instruct",
"clarifai/anthropic.completion.claude-3-opus",
"clarifai/anthropic.completion.claude-3-sonnet",
"clarifai/gcp.generate.gemini-1_5-pro",
"clarifai/gcp.generate.imagen-2",
"clarifai/salesforce.blip.general-english-image-caption-blip-2",
]
huggingface_models: List = [
"meta-llama/Llama-2-7b-hf",
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-2-13b-hf",
"meta-llama/Llama-2-13b-chat-hf",
"meta-llama/Llama-2-70b-hf",
"meta-llama/Llama-2-70b-chat-hf",
"meta-llama/Llama-2-7b",
"meta-llama/Llama-2-7b-chat",
"meta-llama/Llama-2-13b",
"meta-llama/Llama-2-13b-chat",
"meta-llama/Llama-2-70b",
"meta-llama/Llama-2-70b-chat",
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers
empower_models = [
"empower/empower-functions",
"empower/empower-functions-small",
]
together_ai_models: List = [
# llama llms - chat
"togethercomputer/llama-2-70b-chat",
# llama llms - language / instruct
"togethercomputer/llama-2-70b",
"togethercomputer/LLaMA-2-7B-32K",
"togethercomputer/Llama-2-7B-32K-Instruct",
"togethercomputer/llama-2-7b",
# falcon llms
"togethercomputer/falcon-40b-instruct",
"togethercomputer/falcon-7b-instruct",
# alpaca
"togethercomputer/alpaca-7b",
# chat llms
"HuggingFaceH4/starchat-alpha",
# code llms
"togethercomputer/CodeLlama-34b",
"togethercomputer/CodeLlama-34b-Instruct",
"togethercomputer/CodeLlama-34b-Python",
"defog/sqlcoder",
"NumbersStation/nsql-llama-2-7B",
"WizardLM/WizardCoder-15B-V1.0",
"WizardLM/WizardCoder-Python-34B-V1.0",
# language llms
"NousResearch/Nous-Hermes-Llama2-13b",
"Austism/chronos-hermes-13b",
"upstage/SOLAR-0-70b-16bit",
"WizardLM/WizardLM-70B-V1.0",
] # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...)
baseten_models: List = [
"qvv0xeq",
"q841o8w",
"31dxrj3",
] # FALCON 7B # WizardLM # Mosaic ML
featherless_ai_models: List = [
"featherless-ai/Qwerky-72B",
"featherless-ai/Qwerky-QwQ-32B",
"Qwen/Qwen2.5-72B-Instruct",
"all-hands/openhands-lm-32b-v0.1",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"deepseek-ai/DeepSeek-V3-0324",
"mistralai/Mistral-Small-24B-Instruct-2501",
"mistralai/Mistral-Nemo-Instruct-2407",
"ProdeusUnity/Stellar-Odyssey-12b-v0.0",
]
nebius_models: List = [
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-30B-A3B-fast",
"Qwen/Qwen3-32B",
"Qwen/Qwen3-14B",
"nvidia/Llama-3_1-Nemotron-Ultra-253B-v1",
"deepseek-ai/DeepSeek-V3-0324",
"deepseek-ai/DeepSeek-V3-0324-fast",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-fast",
"meta-llama/Llama-3.3-70B-Instruct-fast",
"Qwen/Qwen2.5-32B-Instruct-fast",
"Qwen/Qwen2.5-Coder-32B-Instruct-fast",
]
nebius_embedding_models: List = [
"BAAI/bge-en-icl",
"BAAI/bge-multilingual-gemma2",
"intfloat/e5-mistral-7b-instruct",
]
BEDROCK_INVOKE_PROVIDERS_LITERAL = Literal[
"cohere",
"anthropic",
"mistral",
"amazon",
"meta",
"llama",
"ai21",
"nova",
"deepseek_r1",
]
open_ai_embedding_models: List = ["text-embedding-ada-002"]
cohere_embedding_models: List = [
"embed-v4.0",
"embed-english-v3.0",
"embed-english-light-v3.0",
"embed-multilingual-v3.0",
"embed-english-v2.0",
"embed-english-light-v2.0",
"embed-multilingual-v2.0",
]
bedrock_embedding_models: List = [
"amazon.titan-embed-text-v1",
"cohere.embed-english-v3",
"cohere.embed-multilingual-v3",
]
known_tokenizer_config = {
"mistralai/Mistral-7B-Instruct-v0.1": {
"tokenizer": {
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
"bos_token": "",
"eos_token": "",
},
"status": "success",
},
"meta-llama/Meta-Llama-3-8B-Instruct": {
"tokenizer": {
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
"bos_token": "<|begin_of_text|>",
"eos_token": "",
},
"status": "success",
},
"deepseek-r1/deepseek-r1-7b-instruct": {
"tokenizer": {
"add_bos_token": True,
"add_eos_token": False,
"bos_token": {
"__type": "AddedToken",
"content": "<|begin▁of▁sentence|>",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"clean_up_tokenization_spaces": False,
"eos_token": {
"__type": "AddedToken",
"content": "<|end▁of▁sentence|>",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"legacy": True,
"model_max_length": 16384,
"pad_token": {
"__type": "AddedToken",
"content": "<|end▁of▁sentence|>",
"lstrip": False,
"normalized": True,
"rstrip": False,
"single_word": False,
},
"sp_model_kwargs": {},
"unk_token": None,
"tokenizer_class": "LlamaTokenizerFast",
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '' in content %}{% set content = content.split('')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>\\n'}}{% endif %}",
},
"status": "success",
},
}
OPENAI_FINISH_REASONS = ["stop", "length", "function_call", "content_filter", "null"]
HUMANLOOP_PROMPT_CACHE_TTL_SECONDS = int(
os.getenv("HUMANLOOP_PROMPT_CACHE_TTL_SECONDS", 60)
) # 1 minute
RESPONSE_FORMAT_TOOL_NAME = "json_tool_call" # default tool name used when converting response format to tool call
########################### Logging Callback Constants ###########################
AZURE_STORAGE_MSFT_VERSION = "2019-07-07"
PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES = int(
os.getenv("PROMETHEUS_BUDGET_METRICS_REFRESH_INTERVAL_MINUTES", 5)
)
MCP_TOOL_NAME_PREFIX = "mcp_tool"
MAXIMUM_TRACEBACK_LINES_TO_LOG = int(os.getenv("MAXIMUM_TRACEBACK_LINES_TO_LOG", 100))
########################### LiteLLM Proxy Specific Constants ###########################
########################################################################################
MAX_SPENDLOG_ROWS_TO_QUERY = int(
os.getenv("MAX_SPENDLOG_ROWS_TO_QUERY", 1_000_000)
) # if spendLogs has more than 1M rows, do not query the DB
DEFAULT_SOFT_BUDGET = float(
os.getenv("DEFAULT_SOFT_BUDGET", 50.0)
) # by default all litellm proxy keys have a soft budget of 50.0
# makes it clear this is a rate limit error for a litellm virtual key
RATE_LIMIT_ERROR_MESSAGE_FOR_VIRTUAL_KEY = "LiteLLM Virtual Key user_api_key_hash"
# pass through route constansts
BEDROCK_AGENT_RUNTIME_PASS_THROUGH_ROUTES = [
"agents/",
"knowledgebases/",
"flows/",
"retrieveAndGenerate/",
"rerank/",
"generateQuery/",
"optimize-prompt/",
]
BATCH_STATUS_POLL_INTERVAL_SECONDS = int(
os.getenv("BATCH_STATUS_POLL_INTERVAL_SECONDS", 3600)
) # 1 hour
BATCH_STATUS_POLL_MAX_ATTEMPTS = int(
os.getenv("BATCH_STATUS_POLL_MAX_ATTEMPTS", 24)
) # for 24 hours
HEALTH_CHECK_TIMEOUT_SECONDS = int(
os.getenv("HEALTH_CHECK_TIMEOUT_SECONDS", 60)
) # 60 seconds
UI_SESSION_TOKEN_TEAM_ID = "litellm-dashboard"
LITELLM_PROXY_ADMIN_NAME = "default_user_id"
########################### DB CRON JOB NAMES ###########################
DB_SPEND_UPDATE_JOB_NAME = "db_spend_update_job"
PROMETHEUS_EMIT_BUDGET_METRICS_JOB_NAME = "prometheus_emit_budget_metrics"
SPEND_LOG_CLEANUP_JOB_NAME = "spend_log_cleanup"
SPEND_LOG_RUN_LOOPS = int(os.getenv("SPEND_LOG_RUN_LOOPS", 500))
SPEND_LOG_CLEANUP_BATCH_SIZE = int(os.getenv("SPEND_LOG_CLEANUP_BATCH_SIZE", 1000))
DEFAULT_CRON_JOB_LOCK_TTL_SECONDS = int(
os.getenv("DEFAULT_CRON_JOB_LOCK_TTL_SECONDS", 60)
) # 1 minute
PROXY_BUDGET_RESCHEDULER_MIN_TIME = int(
os.getenv("PROXY_BUDGET_RESCHEDULER_MIN_TIME", 597)
)
PROXY_BUDGET_RESCHEDULER_MAX_TIME = int(
os.getenv("PROXY_BUDGET_RESCHEDULER_MAX_TIME", 605)
)
PROXY_BATCH_WRITE_AT = int(os.getenv("PROXY_BATCH_WRITE_AT", 10)) # in seconds
DEFAULT_HEALTH_CHECK_INTERVAL = int(
os.getenv("DEFAULT_HEALTH_CHECK_INTERVAL", 300)
) # 5 minutes
PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS = int(
os.getenv("PROMETHEUS_FALLBACK_STATS_SEND_TIME_HOURS", 9)
)
DEFAULT_MODEL_CREATED_AT_TIME = int(
os.getenv("DEFAULT_MODEL_CREATED_AT_TIME", 1677610602)
) # returns on `/models` endpoint
DEFAULT_SLACK_ALERTING_THRESHOLD = int(
os.getenv("DEFAULT_SLACK_ALERTING_THRESHOLD", 300)
)
MAX_TEAM_LIST_LIMIT = int(os.getenv("MAX_TEAM_LIST_LIMIT", 20))
DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD = float(
os.getenv("DEFAULT_PROMPT_INJECTION_SIMILARITY_THRESHOLD", 0.7)
)
LENGTH_OF_LITELLM_GENERATED_KEY = int(os.getenv("LENGTH_OF_LITELLM_GENERATED_KEY", 16))
SECRET_MANAGER_REFRESH_INTERVAL = int(
os.getenv("SECRET_MANAGER_REFRESH_INTERVAL", 86400)
)
LITELLM_SETTINGS_SAFE_DB_OVERRIDES = ["default_internal_user_params"]
SPECIAL_LITELLM_AUTH_TOKEN = ["ui-token"]
DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL = int(
os.getenv("DEFAULT_MANAGEMENT_OBJECT_IN_MEMORY_CACHE_TTL", 60)
)