###################################################################### # /v1/batches Endpoints ###################################################################### import asyncio from typing import Dict, Optional, cast from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response import litellm from litellm._logging import verbose_proxy_logger from litellm.batches.main import CancelBatchRequest, RetrieveBatchRequest from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing from litellm.proxy.common_utils.http_parsing_utils import _read_request_body from litellm.proxy.common_utils.openai_endpoint_utils import ( get_custom_llm_provider_from_request_body, ) from litellm.proxy.openai_files_endpoints.common_utils import ( _is_base64_encoded_unified_file_id, get_models_from_unified_file_id, ) from litellm.proxy.utils import handle_exception_on_proxy, is_known_model from litellm.types.llms.openai import LiteLLMBatchCreateRequest router = APIRouter() @router.post( "/{provider}/v1/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.post( "/v1/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.post( "/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) async def create_batch( request: Request, fastapi_response: Response, provider: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Create large batches of API requests for asynchronous processing. This is the equivalent of POST https://api.openai.com/v1/batch Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch Example Curl ``` curl http://localhost:4000/v1/batches \ -H "Authorization: Bearer sk-1234" \ -H "Content-Type: application/json" \ -d '{ "input_file_id": "file-abc123", "endpoint": "/v1/chat/completions", "completion_window": "24h" }' ``` """ from litellm.proxy.proxy_server import ( general_settings, llm_router, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: data = await _read_request_body(request=request) verbose_proxy_logger.debug( "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), ) base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data) ( data, litellm_logging_obj, ) = await base_llm_response_processor.common_processing_pre_call_logic( request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_logging_obj=proxy_logging_obj, proxy_config=proxy_config, route_type="acreate_batch", ) ## check if model is a loadbalanced model router_model: Optional[str] = None is_router_model = False if litellm.enable_loadbalancing_on_batch_endpoints is True: router_model = data.get("model", None) is_router_model = is_known_model(model=router_model, llm_router=llm_router) custom_llm_provider = ( provider or data.pop("custom_llm_provider", None) or "openai" ) _create_batch_data = LiteLLMBatchCreateRequest(**data) input_file_id = _create_batch_data.get("input_file_id", None) unified_file_id: Union[str, Literal[False]] = False if input_file_id: unified_file_id = _is_base64_encoded_unified_file_id(input_file_id) if ( litellm.enable_loadbalancing_on_batch_endpoints is True and is_router_model and router_model is not None ): if llm_router is None: raise HTTPException( status_code=500, detail={ "error": "LLM Router not initialized. Ensure models added to proxy." }, ) response = await llm_router.acreate_batch(**_create_batch_data) # type: ignore elif ( unified_file_id and input_file_id ): # litellm_proxy:application/octet-stream;unified_id,c4843482-b176-4901-8292-7523fd0f2c6e;target_model_names,gpt-4o-mini target_model_names = get_models_from_unified_file_id(unified_file_id) ## EXPECTS 1 MODEL if len(target_model_names) != 1: raise HTTPException( status_code=400, detail={ "error": "Expected 1 model, got {}".format( len(target_model_names) ) }, ) model = target_model_names[0] _create_batch_data["model"] = model if llm_router is None: raise HTTPException( status_code=500, detail={ "error": "LLM Router not initialized. Ensure models added to proxy." }, ) response = await llm_router.acreate_batch(**_create_batch_data) response.input_file_id = input_file_id response._hidden_params["unified_file_id"] = unified_file_id else: response = await litellm.acreate_batch( custom_llm_provider=custom_llm_provider, **_create_batch_data # type: ignore ) ### CALL HOOKS ### - modify outgoing data response = await proxy_logging_obj.post_call_success_hook( data=data, user_api_key_dict=user_api_key_dict, response=response ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( ProxyBaseLLMRequestProcessing.get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( str(e) ) ) raise handle_exception_on_proxy(e) @router.get( "/{provider}/v1/batches/{batch_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.get( "/v1/batches/{batch_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.get( "/batches/{batch_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) async def retrieve_batch( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), provider: Optional[str] = None, batch_id: str = Path( title="Batch ID to retrieve", description="The ID of the batch to retrieve" ), ): """ Retrieves a batch. This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id} Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve Example Curl ``` curl http://localhost:4000/v1/batches/batch_abc123 \ -H "Authorization: Bearer sk-1234" \ -H "Content-Type: application/json" \ ``` """ from litellm.proxy.proxy_server import ( general_settings, llm_router, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: ## check if model is a loadbalanced model _retrieve_batch_request = RetrieveBatchRequest( batch_id=batch_id, ) data = cast(dict, _retrieve_batch_request) unified_batch_id = _is_base64_encoded_unified_file_id(batch_id) base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data) ( data, litellm_logging_obj, ) = await base_llm_response_processor.common_processing_pre_call_logic( request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_logging_obj=proxy_logging_obj, proxy_config=proxy_config, route_type="aretrieve_batch", ) if litellm.enable_loadbalancing_on_batch_endpoints is True or unified_batch_id: if llm_router is None: raise HTTPException( status_code=500, detail={ "error": "LLM Router not initialized. Ensure models added to proxy." }, ) response = await llm_router.aretrieve_batch(**data) # type: ignore response._hidden_params["unified_batch_id"] = unified_batch_id else: custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) response = await litellm.aretrieve_batch( custom_llm_provider=custom_llm_provider, **data # type: ignore ) ### CALL HOOKS ### - modify outgoing data response = await proxy_logging_obj.post_call_success_hook( data=data, user_api_key_dict=user_api_key_dict, response=response ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( ProxyBaseLLMRequestProcessing.get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( str(e) ) ) raise handle_exception_on_proxy(e) @router.get( "/{provider}/v1/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.get( "/v1/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.get( "/batches", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) async def list_batches( request: Request, fastapi_response: Response, provider: Optional[str] = None, limit: Optional[int] = None, after: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Lists This is the equivalent of GET https://api.openai.com/v1/batches/ Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/list Example Curl ``` curl http://localhost:4000/v1/batches?limit=2 \ -H "Authorization: Bearer sk-1234" \ -H "Content-Type: application/json" \ ``` """ from litellm.proxy.proxy_server import proxy_logging_obj, version verbose_proxy_logger.debug("GET /v1/batches after={} limit={}".format(after, limit)) try: custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) response = await litellm.alist_batches( custom_llm_provider=custom_llm_provider, # type: ignore after=after, limit=limit, ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( ProxyBaseLLMRequestProcessing.get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data={"after": after, "limit": limit}, ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format( str(e) ) ) raise handle_exception_on_proxy(e) @router.post( "/{provider}/v1/batches/{batch_id:path}/cancel", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.post( "/v1/batches/{batch_id:path}/cancel", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) @router.post( "/batches/{batch_id:path}/cancel", dependencies=[Depends(user_api_key_auth)], tags=["batch"], ) async def cancel_batch( request: Request, batch_id: str, fastapi_response: Response, provider: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Cancel a batch. This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel Example Curl ``` curl http://localhost:4000/v1/batches/batch_abc123/cancel \ -H "Authorization: Bearer sk-1234" \ -H "Content-Type: application/json" \ -X POST ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: data = await _read_request_body(request=request) verbose_proxy_logger.debug( "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) custom_llm_provider = ( provider or data.pop("custom_llm_provider", None) or "openai" ) _cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data) response = await litellm.acancel_batch( custom_llm_provider=custom_llm_provider, # type: ignore **_cancel_batch_data ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( ProxyBaseLLMRequestProcessing.get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format( str(e) ) ) raise handle_exception_on_proxy(e) ###################################################################### # END OF /v1/batches Endpoints Implementation ######################################################################