import logging import os import sys import traceback import asyncio from typing import Optional import pytest import base64 from io import BytesIO from unittest.mock import patch, AsyncMock import json sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path import litellm from litellm.utils import ImageResponse from litellm.integrations.custom_logger import CustomLogger from litellm.types.utils import StandardLoggingPayload class TestCustomLogger(CustomLogger): def __init__(self): self.standard_logging_payload: Optional[StandardLoggingPayload] = None async def async_log_success_event(self, kwargs, response_obj, start_time, end_time): self.standard_logging_payload = kwargs.get("standard_logging_object", None) pass # Get the current directory of the file being run pwd = os.path.dirname(os.path.realpath(__file__)) TEST_IMAGES = [ open(os.path.join(pwd, "ishaan_github.png"), "rb"), open(os.path.join(pwd, "litellm_site.png"), "rb"), ] def get_test_images_as_bytesio(): """Helper function to get test images as BytesIO objects""" bytesio_images = [] for image_path in ["ishaan_github.png", "litellm_site.png"]: with open(os.path.join(pwd, image_path), "rb") as f: image_bytes = f.read() bytesio_images.append(BytesIO(image_bytes)) return bytesio_images @pytest.mark.parametrize("sync_mode", [True, False]) @pytest.mark.flaky(retries=3, delay=2) @pytest.mark.asyncio async def test_openai_image_edit_litellm_sdk(sync_mode): from litellm import image_edit, aimage_edit litellm._turn_on_debug() try: prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ if sync_mode: result = image_edit( prompt=prompt, model="gpt-image-1", image=TEST_IMAGES, ) else: result = await aimage_edit( prompt=prompt, model="gpt-image-1", image=TEST_IMAGES, ) print("result from image edit", result) # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit.png", "wb") as f: f.write(image_bytes) except litellm.ContentPolicyViolationError as e: pass @pytest.mark.flaky(retries=3, delay=2) @pytest.mark.asyncio async def test_openai_image_edit_litellm_router(): litellm._turn_on_debug() try: prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ router = litellm.Router( model_list=[ { "model_name": "gpt-image-1", "litellm_params": { "model": "gpt-image-1", }, } ] ) result = await router.aimage_edit( prompt=prompt, model="gpt-image-1", image=TEST_IMAGES, ) print("result from image edit", result) # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit.png", "wb") as f: f.write(image_bytes) except litellm.ContentPolicyViolationError as e: pass @pytest.mark.flaky(retries=3, delay=2) @pytest.mark.asyncio async def test_openai_image_edit_with_bytesio(): """Test image editing using BytesIO objects instead of file readers""" from litellm import image_edit, aimage_edit litellm._turn_on_debug() try: prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ # Get images as BytesIO objects bytesio_images = get_test_images_as_bytesio() result = await aimage_edit( prompt=prompt, model="gpt-image-1", image=bytesio_images, ) print("result from image edit with BytesIO", result) # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit_bytesio.png", "wb") as f: f.write(image_bytes) except litellm.ContentPolicyViolationError as e: pass @pytest.mark.asyncio async def test_azure_image_edit_litellm_sdk(): """Test Azure image edit with mocked httpx request to validate request body and URL""" from litellm import image_edit, aimage_edit # Mock response for Azure image edit mock_response = { "created": 1589478378, "data": [ { "b64_json": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8/5+hHgAHggJ/PchI7wAAAABJRU5ErkJggg==" } ] } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ # Set up test environment variables test_api_base = "https://ai-api-gw-uae-north.openai.azure.com" test_api_key = "test-api-key" test_api_version = "2025-04-01-preview" result = await aimage_edit( prompt=prompt, model="azure/gpt-image-1", api_base=test_api_base, api_key=test_api_key, api_version=test_api_version, image=TEST_IMAGES, ) # Verify the request was made correctly mock_post.assert_called_once() # Check the URL call_args = mock_post.call_args expected_url = f"{test_api_base}/openai/deployments/gpt-image-1/images/edits?api-version={test_api_version}" actual_url = call_args.args[0] if call_args.args else call_args.kwargs.get('url') print(f"Expected URL: {expected_url}") print(f"Actual URL: {actual_url}") assert actual_url == expected_url, f"URL mismatch. Expected: {expected_url}, Got: {actual_url}" # Check the request body if 'data' in call_args.kwargs: # For multipart form data, check the data parameter form_data = call_args.kwargs['data'] print("Form data keys:", list(form_data.keys()) if hasattr(form_data, 'keys') else "Not a dict") # Validate that model and prompt are in the form data assert 'model' in form_data, "model should be in form data" assert 'prompt' in form_data, "prompt should be in form data" assert form_data['model'] == 'gpt-image-1', f"Expected model 'gpt-image-1', got {form_data['model']}" assert prompt.strip() in form_data['prompt'], f"Expected prompt to contain '{prompt.strip()}'" # Check headers headers = call_args.kwargs.get('headers', {}) print("Request headers:", headers) assert 'Authorization' in headers, "Authorization header should be present" assert headers['Authorization'].startswith('Bearer '), "Authorization should be Bearer token" print("result from image edit", result) # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit.png", "wb") as f: f.write(image_bytes) @pytest.mark.asyncio async def test_openai_image_edit_cost_tracking(): """Test OpenAI image edit cost tracking with custom logger""" from litellm import image_edit, aimage_edit test_custom_logger = TestCustomLogger() litellm.logging_callback_manager._reset_all_callbacks() litellm.callbacks = [test_custom_logger] # Mock response for Azure image edit mock_response = { "created": 1589478378, "data": [ { "b64_json": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8/5+hHgAHggJ/PchI7wAAAABJRU5ErkJggg==" } ] } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ # Set up test environment variables result = await aimage_edit( prompt=prompt, model="openai/gpt-image-1", image=TEST_IMAGES, ) # Verify the request was made correctly mock_post.assert_called_once() # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit.png", "wb") as f: f.write(image_bytes) await asyncio.sleep(5) print("standard logging payload", json.dumps(test_custom_logger.standard_logging_payload, indent=4, default=str)) # check model assert test_custom_logger.standard_logging_payload["model"] == "gpt-image-1" assert test_custom_logger.standard_logging_payload["custom_llm_provider"] == "openai" # check response_cost assert test_custom_logger.standard_logging_payload["response_cost"] is not None assert test_custom_logger.standard_logging_payload["response_cost"] > 0 @pytest.mark.asyncio async def test_azure_image_edit_cost_tracking(): """Test Azure image edit cost tracking with custom logger""" from litellm import image_edit, aimage_edit test_custom_logger = TestCustomLogger() litellm.logging_callback_manager._reset_all_callbacks() litellm.callbacks = [test_custom_logger] # Mock response for Azure image edit mock_response = { "created": 1589478378, "data": [ { "b64_json": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8/5+hHgAHggJ/PchI7wAAAABJRU5ErkJggg==" } ] } class MockResponse: def __init__(self, json_data, status_code): self._json_data = json_data self.status_code = status_code self.text = json.dumps(json_data) def json(self): return self._json_data with patch( "litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post", new_callable=AsyncMock, ) as mock_post: # Configure the mock to return our response mock_post.return_value = MockResponse(mock_response, 200) litellm._turn_on_debug() prompt = """ Create a studio ghibli style image that combines all the reference images. Make sure the person looks like a CTO. """ # Set up test environment variables result = await aimage_edit( prompt=prompt, model="azure/CUSTOM_AZURE_DEPLOYMENT_NAME", base_model="azure/gpt-image-1", image=TEST_IMAGES, ) # Verify the request was made correctly mock_post.assert_called_once() # Validate the response meets expected schema ImageResponse.model_validate(result) if isinstance(result, ImageResponse) and result.data: image_base64 = result.data[0].b64_json if image_base64: image_bytes = base64.b64decode(image_base64) # Save the image to a file with open("test_image_edit.png", "wb") as f: f.write(image_bytes) await asyncio.sleep(5) print("standard logging payload", json.dumps(test_custom_logger.standard_logging_payload, indent=4, default=str)) # check model assert test_custom_logger.standard_logging_payload["model"] == "CUSTOM_AZURE_DEPLOYMENT_NAME" assert test_custom_logger.standard_logging_payload["custom_llm_provider"] == "azure" # check response_cost assert test_custom_logger.standard_logging_payload["response_cost"] is not None assert test_custom_logger.standard_logging_payload["response_cost"] > 0