from ultralytics import YOLO from base64 import b64encode from speech_recognition import AudioFile, Recognizer import numpy as np from scipy.spatial import distance as dist from sahi.utils.cv import read_image_as_pil from fastapi import FastAPI, File, UploadFile, Form from utils import tts, read_image_file, pil_to_base64, base64_to_pil, get_hist from typing import Optional from huggingface_hub import hf_hub_download model_path = hf_hub_download(repo_id="ultralyticsplus/yolov8s", filename='yolov8s.pt') model = YOLO(model_path) CLASS = model.model.names defaul_bot_voice = "おはいようございます" area_thres = 0.3 app = FastAPI() @app.get("/") def read_root(): return {"Message": "Application startup complete"} @app.post("/aisatsu_api/") async def predict_api( file: UploadFile = File(...), last_seen: Optional[str] = Form(None) ): image = read_image_file(await file.read()) results = model.predict(image, show=False)[0] image = read_image_as_pil(image) masks, boxes = results.masks, results.boxes area_image = image.width * image.height voice_bot = None most_close = 0 out_img = None diff_value = 0.5 if boxes is not None: for xyxy, conf, cls in zip(boxes.xyxy, boxes.conf, boxes.cls): if int(cls) != 0: continue box = xyxy.tolist() area_rate = (box[2] - box[0]) * (box[3] - box[1]) / area_image if area_rate >= most_close: out_img = image.crop(tuple(box)).resize((64, 64)) most_close = area_rate if last_seen is not None: last_seen = base64_to_pil(last_seen) if out_img is not None: diff_value = dist.euclidean(get_hist(out_img), get_hist(last_seen)) print(most_close, diff_value) if most_close >= area_thres and diff_value >= 0.5: voice_bot = tts(defaul_bot_voice, language="ja") return { "voice": voice_bot, "image": pil_to_base64(out_img) if out_img is not None else None }