Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import JSONResponse, Response | |
import uvicorn | |
import logging | |
import time | |
import supervision as sv | |
from ultralytics import YOLO | |
app = FastAPI() | |
model = YOLO("models/best_v22.pt", task="detect") | |
def parse_detection(detections): | |
parsed_rows = [] | |
for i in range(len(detections.xyxy)): | |
x_min = float(detections.xyxy[i][0]) | |
y_min = float(detections.xyxy[i][1]) | |
x_max = float(detections.xyxy[i][2]) | |
y_max = float(detections.xyxy[i][3]) | |
width = int(x_max - x_min) | |
height = int(y_max - y_min) | |
row = { | |
"x": int(y_min), | |
"y": int(x_min), | |
"width": width, | |
"height": height, | |
"class_id": "" | |
if detections.class_id is None | |
else int(detections.class_id[i]), | |
"confidence": "" | |
if detections.confidence is None | |
else float(detections.confidence[i]), | |
"tracker_id": "" | |
if detections.tracker_id is None | |
else int(detections.tracker_id[i]), | |
} | |
if hasattr(detections, "data"): | |
for key, value in detections.data.items(): | |
if key == "class_name": | |
key = "class" | |
row[key] = ( | |
str(value[i]) | |
if hasattr(value, "__getitem__") and value.ndim != 0 | |
else str(value) | |
) | |
parsed_rows.append(row) | |
return parsed_rows | |
def infer(image): | |
image_arr = np.frombuffer(image, np.uint8) | |
image = cv2.imdecode(image_arr, cv2.IMREAD_COLOR) | |
image = cv2.resize(image, (640, 640)) | |
results = model(image, conf=0.6, iou=0.25, imgsz=640)[0] | |
width, height = results.orig_shape[1], results.orig_shape[0] | |
print(results.speed) | |
detections = sv.Detections.from_ultralytics(results) | |
parsed_rows = parse_detection(detections) | |
parsed_result = {'predictions': parsed_rows, 'image': {'width': width, 'height': height}} | |
return parsed_result | |
async def process_image(image: UploadFile = File(...)): | |
filename = image.filename | |
logging.info(f"Received process-image request for file: {filename}") | |
image_data = await image.read() | |
results = infer(image_data) | |
logging.info("Returning JSON results") | |
return JSONResponse(content=results) | |
def hello_world(): | |
return 'Hello World from Detomo AI!' | |
if __name__ == "__main__": | |
uvicorn.run("main:app", port=8001, reload=True) | |