Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,9 +20,25 @@ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_
|
|
20 |
onnx_model = YOLO("models/best.onnx", task='detect')
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def ends_with_number(s):
|
24 |
return s[-1].isdigit()
|
25 |
|
|
|
26 |
def ocr(image, prompt="<OCR>"):
|
27 |
original_height, original_width = image.shape[:2]
|
28 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
@@ -45,6 +61,7 @@ def ocr(image, prompt="<OCR>"):
|
|
45 |
|
46 |
return parsed_answer
|
47 |
|
|
|
48 |
def parse_detection(detections):
|
49 |
parsed_rows = []
|
50 |
for i in range(len(detections.xyxy)):
|
@@ -103,6 +120,7 @@ def cut_and_save_image(image, parsed_detections, output_dir):
|
|
103 |
output_path_list.append(output_path)
|
104 |
return output_path_list
|
105 |
|
|
|
106 |
def analysis(progress=gr.Progress()):
|
107 |
progress(0, desc="Analyzing...")
|
108 |
list_files = glob.glob("output/*.png")
|
@@ -123,6 +141,7 @@ def analysis(progress=gr.Progress()):
|
|
123 |
print("Time taken:", time.time() - start_time)
|
124 |
return pd.DataFrame(results.items(), columns=['Mark', 'Total']).reset_index(drop=False).rename(columns={'index': 'No.'})
|
125 |
|
|
|
126 |
def inference(
|
127 |
image_path,
|
128 |
conf_threshold,
|
@@ -143,6 +162,7 @@ def inference(
|
|
143 |
|
144 |
results = onnx_model(image, conf=conf_threshold, iou=iou_threshold)[0]
|
145 |
detections = sv.Detections.from_ultralytics(results)
|
|
|
146 |
parsed_detections = parse_detection(detections)
|
147 |
output_dir = "output"
|
148 |
# Check if the output directory exists, clear all the files inside
|
|
|
20 |
onnx_model = YOLO("models/best.onnx", task='detect')
|
21 |
|
22 |
|
23 |
+
def filter_detections(detections, target_class_name="mark"):
|
24 |
+
indices_to_keep = [i for i, class_name in enumerate(detections.data['class_name']) if
|
25 |
+
class_name == target_class_name]
|
26 |
+
|
27 |
+
filtered_xyxy = detections.xyxy[indices_to_keep]
|
28 |
+
filtered_confidence = detections.confidence[indices_to_keep]
|
29 |
+
filtered_class_id = detections.class_id[indices_to_keep]
|
30 |
+
filtered_class_name = detections.data['class_name'][indices_to_keep]
|
31 |
+
detections.xyxy = filtered_xyxy
|
32 |
+
detections.confidence = filtered_confidence
|
33 |
+
detections.class_id = filtered_class_id
|
34 |
+
detections.data['class_name'] = filtered_class_name
|
35 |
+
return detections
|
36 |
+
|
37 |
+
|
38 |
def ends_with_number(s):
|
39 |
return s[-1].isdigit()
|
40 |
|
41 |
+
|
42 |
def ocr(image, prompt="<OCR>"):
|
43 |
original_height, original_width = image.shape[:2]
|
44 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
|
|
61 |
|
62 |
return parsed_answer
|
63 |
|
64 |
+
|
65 |
def parse_detection(detections):
|
66 |
parsed_rows = []
|
67 |
for i in range(len(detections.xyxy)):
|
|
|
120 |
output_path_list.append(output_path)
|
121 |
return output_path_list
|
122 |
|
123 |
+
|
124 |
def analysis(progress=gr.Progress()):
|
125 |
progress(0, desc="Analyzing...")
|
126 |
list_files = glob.glob("output/*.png")
|
|
|
141 |
print("Time taken:", time.time() - start_time)
|
142 |
return pd.DataFrame(results.items(), columns=['Mark', 'Total']).reset_index(drop=False).rename(columns={'index': 'No.'})
|
143 |
|
144 |
+
|
145 |
def inference(
|
146 |
image_path,
|
147 |
conf_threshold,
|
|
|
162 |
|
163 |
results = onnx_model(image, conf=conf_threshold, iou=iou_threshold)[0]
|
164 |
detections = sv.Detections.from_ultralytics(results)
|
165 |
+
detections = filter_detections(detections)
|
166 |
parsed_detections = parse_detection(detections)
|
167 |
output_dir = "output"
|
168 |
# Check if the output directory exists, clear all the files inside
|