File size: 4,305 Bytes
32ef70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
from langchain.llms.huggingface_hub import HuggingFaceHub

css = '''
<style>
.chat-message {
    padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
}
.chat-message.user {
    background-color: #2b313e
}
.chat-message.bot {
    background-color: #475063
}
.chat-message .avatar {
  width: 20%;
}
.chat-message .avatar img {
  max-width: 78px;
  max-height: 78px;
  border-radius: 50%;
  object-fit: cover;
}
.chat-message .message {
  width: 80%;
  padding: 0 1.5rem;
  color: #fff;
}
'''

bot_template = '''
<div class="chat-message bot">
    <div class="avatar">
        <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
    </div>
    <div class="message">{{MSG}}</div>
</div>
'''

user_template = '''
<div class="chat-message user">
    <div class="avatar">
        <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
    </div>    
    <div class="message">{{MSG}}</div>
</div>
'''

st.set_page_config(
    page_icon=':balloon:',
    page_title= 'dump',
    layout='wide'
)
st.title(body='*Streamlit*')

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator='\n',
        chunk_size = 500,
        chunk_overlap = 200,
        length_function = len
    )
    chunks = text_splitter.split_text(text)
    return chunks

def get_vectorstore(text_chunks):
    embeddings = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-xl')
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def get_conversation_chain(vectorstore):
    llm = HuggingFaceHub(
        repo_id = 'google/flan-t5-xxl',
        model_kwargs = {"temperature":0.5, "max_length":256}
    )
    memory = ConversationBufferMemory(
        memory_key='chat_history',
        return_messages=True
    )
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm = llm,
        retriever=vectorstore.as_retriever(),
        memory = memory
    )
    return conversation_chain

def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']
    for i, message in enumerate(st.session_state.chat_history):
        if i %2 == 0:
            st.write(user_template.replace("{{MSG}}",message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)

def main():
    load_dotenv()
    st.write(css, unsafe_allow_html=True)
    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None
    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)
    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            label="Upload your PDFs here and click on 'Process'",
            accept_multiple_files=True
        )
        if st.button('Process'):
            with st.spinner('Processing'):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)

                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(vectorstore)
        
if __name__ == '__main__':
    main()