Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,113 +14,24 @@ if not IS_DUPLICATE:
|
|
14 |
|
15 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
16 |
|
17 |
-
#
|
18 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
"🇺🇸 American English": "a",
|
23 |
-
"🇬🇧 British English": "b",
|
24 |
-
"🇯🇵 Japanese": "j",
|
25 |
-
"🇨🇳 Mandarin Chinese": "z",
|
26 |
-
"🇪🇸 Spanish": "e",
|
27 |
-
"🇫🇷 French": "f",
|
28 |
-
"🇮🇳 Hindi": "h",
|
29 |
-
"🇮🇹 Italian": "i",
|
30 |
-
"🇧🇷 Brazilian Portuguese": "p"
|
31 |
-
}
|
32 |
-
|
33 |
-
# Initialize all pipelines
|
34 |
-
pipelines = {code: KPipeline(lang_code=code, model=False) for code in LANG_CODES.values()}
|
35 |
-
|
36 |
-
# Voice dictionary grouped by language
|
37 |
-
VOICES = {
|
38 |
-
"a": { # American English
|
39 |
-
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
40 |
-
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
41 |
-
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
|
42 |
-
'🇺🇸 🚺 Aoede': 'af_aoede',
|
43 |
-
'🇺🇸 🚺 Kore': 'af_kore',
|
44 |
-
'🇺🇸 🚺 Sarah': 'af_sarah',
|
45 |
-
'🇺🇸 🚺 Nova': 'af_nova',
|
46 |
-
'🇺🇸 🚺 Sky': 'af_sky',
|
47 |
-
'🇺🇸 🚺 Alloy': 'af_alloy',
|
48 |
-
'🇺🇸 🚺 Jessica': 'af_jessica',
|
49 |
-
'🇺🇸 🚺 River': 'af_river',
|
50 |
-
'🇺🇸 🚹 Michael': 'am_michael',
|
51 |
-
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
52 |
-
'🇺🇸 🚹 Puck': 'am_puck',
|
53 |
-
'🇺🇸 🚹 Echo': 'am_echo',
|
54 |
-
'🇺🇸 🚹 Eric': 'am_eric',
|
55 |
-
'🇺🇸 🚹 Liam': 'am_liam',
|
56 |
-
'🇺🇸 🚹 Onyx': 'am_onyx',
|
57 |
-
'🇺🇸 🚹 Santa': 'am_santa',
|
58 |
-
'🇺🇸 🚹 Adam': 'am_adam',
|
59 |
-
},
|
60 |
-
"b": { # British English
|
61 |
-
'🇬🇧 🚺 Emma': 'bf_emma',
|
62 |
-
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
63 |
-
'🇬🇧 🚺 Alice': 'bf_alice',
|
64 |
-
'🇬🇧 🚺 Lily': 'bf_lily',
|
65 |
-
'🇬🇧 🚹 George': 'bm_george',
|
66 |
-
'🇬🇧 🚹 Fable': 'bm_fable',
|
67 |
-
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
68 |
-
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
69 |
-
},
|
70 |
-
"j": { # Japanese
|
71 |
-
'🇯🇵 🚺 Alpha': 'jf_alpha',
|
72 |
-
'🇯🇵 🚺 Gongitsune': 'jf_gongitsune',
|
73 |
-
'🇯🇵 🚺 Nezumi': 'jf_nezumi',
|
74 |
-
'🇯🇵 🚺 Tebukuro': 'jf_tebukuro',
|
75 |
-
'🇯🇵 🚹 Kumo': 'jm_kumo',
|
76 |
-
},
|
77 |
-
"z": { # Mandarin Chinese
|
78 |
-
'🇨🇳 🚺 Xiaobei': 'zf_xiaobei',
|
79 |
-
'🇨🇳 🚺 Xiaoni': 'zf_xiaoni',
|
80 |
-
'🇨🇳 🚺 Xiaoxiao': 'zf_xiaoxiao',
|
81 |
-
'🇨🇳 🚺 Xiaoyi': 'zf_xiaoyi',
|
82 |
-
'🇨🇳 🚹 Yunjian': 'zm_yunjian',
|
83 |
-
'🇨🇳 🚹 Yunxi': 'zm_yunxi',
|
84 |
-
'🇨🇳 🚹 Yunxia': 'zm_yunxia',
|
85 |
-
'🇨🇳 🚹 Yunyang': 'zm_yunyang',
|
86 |
-
},
|
87 |
-
"e": { # Spanish
|
88 |
-
'🇪🇸 🚺 Dora': 'ef_dora',
|
89 |
-
'🇪🇸 🚹 Alex': 'em_alex',
|
90 |
-
'🇪🇸 🚹 Santa': 'em_santa',
|
91 |
-
},
|
92 |
-
"f": { # French
|
93 |
-
'🇫🇷 🚺 Siwis': 'ff_siwis',
|
94 |
-
},
|
95 |
-
"h": { # Hindi
|
96 |
-
'🇮🇳 🚺 Alpha': 'hf_alpha',
|
97 |
-
'🇮🇳 🚺 Beta': 'hf_beta',
|
98 |
-
'🇮🇳 🚹 Omega': 'hm_omega',
|
99 |
-
'🇮🇳 🚹 Psi': 'hm_psi',
|
100 |
-
},
|
101 |
-
"i": { # Italian
|
102 |
-
'🇮🇹 🚺 Sara': 'if_sara',
|
103 |
-
'🇮🇹 🚹 Nicola': 'im_nicola',
|
104 |
-
},
|
105 |
-
"p": { # Brazilian Portuguese
|
106 |
-
'🇧🇷 🚺 Dora': 'pf_dora',
|
107 |
-
'🇧🇷 🚹 Alex': 'pm_alex',
|
108 |
-
'🇧🇷 🚹 Santa': 'pm_santa',
|
109 |
-
}
|
110 |
-
}
|
111 |
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
@spaces.GPU(duration=30)
|
118 |
def forward_gpu(ps, ref_s, speed):
|
119 |
return models[True](ps, ref_s, speed)
|
120 |
|
121 |
-
def generate_first(text,
|
122 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
123 |
-
pipeline = pipelines[
|
124 |
pack = pipeline.load_voice(voice)
|
125 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
126 |
for _, ps, _ in pipeline(text, voice, speed):
|
@@ -133,22 +44,26 @@ def generate_first(text, lang, voice, speed=1, use_gpu=CUDA_AVAILABLE):
|
|
133 |
except gr.exceptions.Error as e:
|
134 |
if use_gpu:
|
135 |
gr.Warning(str(e))
|
136 |
-
gr.Info('Retrying with CPU.')
|
137 |
audio = models[False](ps, ref_s, speed)
|
138 |
else:
|
139 |
raise gr.Error(e)
|
140 |
return (24000, audio.numpy()), ps
|
141 |
return None, ''
|
142 |
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
145 |
for _, ps, _ in pipeline(text, voice):
|
146 |
return ps
|
147 |
return ''
|
148 |
|
149 |
-
def generate_all(text,
|
150 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
151 |
-
pipeline = pipelines[
|
152 |
pack = pipeline.load_voice(voice)
|
153 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
154 |
first = True
|
@@ -185,7 +100,51 @@ def get_frankenstein():
|
|
185 |
with open('frankenstein5k.md', 'r') as r:
|
186 |
return r.read().strip()
|
187 |
|
188 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
TOKEN_NOTE = '''
|
190 |
💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)`
|
191 |
|
@@ -200,22 +159,31 @@ with gr.Blocks() as generate_tab:
|
|
200 |
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
201 |
generate_btn = gr.Button('Generate', variant='primary')
|
202 |
with gr.Accordion('Output Tokens', open=True):
|
203 |
-
out_ps = gr.Textbox(interactive=False, show_label=False)
|
204 |
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
205 |
gr.Markdown(TOKEN_NOTE)
|
206 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
207 |
|
208 |
-
STREAM_NOTE = '⚠️
|
|
|
|
|
|
|
|
|
|
|
209 |
with gr.Blocks() as stream_tab:
|
210 |
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
211 |
with gr.Row():
|
212 |
stream_btn = gr.Button('Stream', variant='primary')
|
213 |
stop_btn = gr.Button('Stop', variant='stop')
|
|
|
|
|
|
|
214 |
|
215 |
BANNER_TEXT = '''
|
216 |
-
[***Kokoro*** **TTS model
|
217 |
-
'''
|
218 |
|
|
|
|
|
219 |
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
220 |
API_NAME = None if API_OPEN else False
|
221 |
with gr.Blocks() as app:
|
@@ -223,42 +191,31 @@ with gr.Blocks() as app:
|
|
223 |
gr.Markdown(BANNER_TEXT, container=True)
|
224 |
with gr.Row():
|
225 |
with gr.Column():
|
226 |
-
text = gr.Textbox(label='Input Text')
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
value=CUDA_AVAILABLE,
|
242 |
-
label='Hardware',
|
243 |
-
interactive=CUDA_AVAILABLE
|
244 |
-
)
|
245 |
-
speed = gr.Slider(0.5, 2, 1, 0.1, label='Speed')
|
246 |
-
random_btn = gr.Button('🎲 Random Quote')
|
247 |
-
gatsby_btn = gr.Button('🥂 Gatsby')
|
248 |
-
frankenstein_btn = gr.Button('💀 Frankenstein')
|
249 |
with gr.Column():
|
250 |
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
tokenize_btn.click(lambda t, l, v: tokenize_first(t, LANG_CODES[l], VOICES[LANG_CODES[l]][v]),
|
258 |
-
inputs=[text, lang, voice], outputs=[out_ps])
|
259 |
-
stream_event = stream_btn.click(lambda t, l, v, s, g: generate_all(t, LANG_CODES[l], VOICES[LANG_CODES[l]][v], s, g),
|
260 |
-
inputs=[text, lang, voice, speed, use_gpu], outputs=[out_stream])
|
261 |
stop_btn.click(fn=None, cancels=stream_event)
|
|
|
262 |
|
263 |
if __name__ == '__main__':
|
264 |
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|
|
|
14 |
|
15 |
CHAR_LIMIT = None if IS_DUPLICATE else 5000
|
16 |
|
17 |
+
# --- Models: CPU & GPU ---
|
18 |
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
19 |
|
20 |
+
# --- Pipelines: American English (a), British English (b), Hindi (h) ---
|
21 |
+
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'abh'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Example custom phoneme golds for English voices
|
24 |
+
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
|
25 |
+
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'
|
26 |
+
# Hindi pipeline can have custom entries if needed
|
27 |
|
28 |
@spaces.GPU(duration=30)
|
29 |
def forward_gpu(ps, ref_s, speed):
|
30 |
return models[True](ps, ref_s, speed)
|
31 |
|
32 |
+
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
33 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
34 |
+
pipeline = pipelines[voice[0]]
|
35 |
pack = pipeline.load_voice(voice)
|
36 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
37 |
for _, ps, _ in pipeline(text, voice, speed):
|
|
|
44 |
except gr.exceptions.Error as e:
|
45 |
if use_gpu:
|
46 |
gr.Warning(str(e))
|
47 |
+
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
|
48 |
audio = models[False](ps, ref_s, speed)
|
49 |
else:
|
50 |
raise gr.Error(e)
|
51 |
return (24000, audio.numpy()), ps
|
52 |
return None, ''
|
53 |
|
54 |
+
# Arena API
|
55 |
+
def predict(text, voice='af_heart', speed=1):
|
56 |
+
return generate_first(text, voice, speed, use_gpu=False)[0]
|
57 |
+
|
58 |
+
def tokenize_first(text, voice='af_heart'):
|
59 |
+
pipeline = pipelines[voice[0]]
|
60 |
for _, ps, _ in pipeline(text, voice):
|
61 |
return ps
|
62 |
return ''
|
63 |
|
64 |
+
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
|
65 |
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
|
66 |
+
pipeline = pipelines[voice[0]]
|
67 |
pack = pipeline.load_voice(voice)
|
68 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
69 |
first = True
|
|
|
100 |
with open('frankenstein5k.md', 'r') as r:
|
101 |
return r.read().strip()
|
102 |
|
103 |
+
# --- Voice Choices ---
|
104 |
+
CHOICES = {
|
105 |
+
# American English
|
106 |
+
'🇺🇸 🚺 Heart ❤️': 'af_heart',
|
107 |
+
'🇺🇸 🚺 Bella 🔥': 'af_bella',
|
108 |
+
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
|
109 |
+
'🇺🇸 🚺 Aoede': 'af_aoede',
|
110 |
+
'🇺🇸 🚺 Kore': 'af_kore',
|
111 |
+
'🇺🇸 🚺 Sarah': 'af_sarah',
|
112 |
+
'🇺🇸 🚺 Nova': 'af_nova',
|
113 |
+
'🇺🇸 🚺 Sky': 'af_sky',
|
114 |
+
'🇺🇸 🚺 Alloy': 'af_alloy',
|
115 |
+
'🇺🇸 🚺 Jessica': 'af_jessica',
|
116 |
+
'🇺🇸 🚺 River': 'af_river',
|
117 |
+
'🇺🇸 🚹 Michael': 'am_michael',
|
118 |
+
'🇺🇸 🚹 Fenrir': 'am_fenrir',
|
119 |
+
'🇺🇸 🚹 Puck': 'am_puck',
|
120 |
+
'🇺🇸 🚹 Echo': 'am_echo',
|
121 |
+
'🇺🇸 🚹 Eric': 'am_eric',
|
122 |
+
'🇺🇸 🚹 Liam': 'am_liam',
|
123 |
+
'🇺🇸 🚹 Onyx': 'am_onyx',
|
124 |
+
'🇺🇸 🚹 Santa': 'am_santa',
|
125 |
+
'🇺🇸 🚹 Adam': 'am_adam',
|
126 |
+
|
127 |
+
# British English
|
128 |
+
'🇬🇧 🚺 Emma': 'bf_emma',
|
129 |
+
'🇬🇧 🚺 Isabella': 'bf_isabella',
|
130 |
+
'🇬🇧 🚺 Alice': 'bf_alice',
|
131 |
+
'🇬🇧 🚺 Lily': 'bf_lily',
|
132 |
+
'🇬🇧 🚹 George': 'bm_george',
|
133 |
+
'🇬🇧 🚹 Fable': 'bm_fable',
|
134 |
+
'🇬🇧 🚹 Lewis': 'bm_lewis',
|
135 |
+
'🇬🇧 🚹 Daniel': 'bm_daniel',
|
136 |
+
|
137 |
+
# Hindi
|
138 |
+
'🇮🇳 🚺 Alpha': 'hf_alpha',
|
139 |
+
'🇮🇳 🚺 Beta': 'hf_beta',
|
140 |
+
'🇮🇳 🚹 Omega': 'hm_omega',
|
141 |
+
'🇮🇳 🚹 Psi': 'hm_psi',
|
142 |
+
}
|
143 |
+
|
144 |
+
# Preload all voices
|
145 |
+
for v in CHOICES.values():
|
146 |
+
pipelines[v[0]].load_voice(v)
|
147 |
+
|
148 |
TOKEN_NOTE = '''
|
149 |
💡 Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kˈOkəɹO/)`
|
150 |
|
|
|
159 |
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
|
160 |
generate_btn = gr.Button('Generate', variant='primary')
|
161 |
with gr.Accordion('Output Tokens', open=True):
|
162 |
+
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
|
163 |
tokenize_btn = gr.Button('Tokenize', variant='secondary')
|
164 |
gr.Markdown(TOKEN_NOTE)
|
165 |
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
|
166 |
|
167 |
+
STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
|
168 |
+
if CHAR_LIMIT is not None:
|
169 |
+
STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.')
|
170 |
+
STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
|
171 |
+
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
|
172 |
+
|
173 |
with gr.Blocks() as stream_tab:
|
174 |
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
175 |
with gr.Row():
|
176 |
stream_btn = gr.Button('Stream', variant='primary')
|
177 |
stop_btn = gr.Button('Stop', variant='stop')
|
178 |
+
with gr.Accordion('Note', open=True):
|
179 |
+
gr.Markdown(STREAM_NOTE)
|
180 |
+
gr.DuplicateButton()
|
181 |
|
182 |
BANNER_TEXT = '''
|
183 |
+
[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://huggingface.co/hexgrad/Kokoro-82M)
|
|
|
184 |
|
185 |
+
This demo only showcases English and Hindi, but you can directly use the model to access other languages.
|
186 |
+
'''
|
187 |
API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS'
|
188 |
API_NAME = None if API_OPEN else False
|
189 |
with gr.Blocks() as app:
|
|
|
191 |
gr.Markdown(BANNER_TEXT, container=True)
|
192 |
with gr.Row():
|
193 |
with gr.Column():
|
194 |
+
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
|
195 |
+
with gr.Row():
|
196 |
+
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
|
197 |
+
use_gpu = gr.Dropdown(
|
198 |
+
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
|
199 |
+
value=CUDA_AVAILABLE,
|
200 |
+
label='Hardware',
|
201 |
+
info='GPU is usually faster, but has a usage quota',
|
202 |
+
interactive=CUDA_AVAILABLE
|
203 |
+
)
|
204 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
|
205 |
+
random_btn = gr.Button('🎲 Random Quote 💬', variant='secondary')
|
206 |
+
with gr.Row():
|
207 |
+
gatsby_btn = gr.Button('🥂 Gatsby 📕', variant='secondary')
|
208 |
+
frankenstein_btn = gr.Button('💀 Frankenstein 📗', variant='secondary')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
with gr.Column():
|
210 |
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
|
211 |
+
random_btn.click(fn=get_random_quote, inputs=[], outputs=[text], api_name=API_NAME)
|
212 |
+
gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text], api_name=API_NAME)
|
213 |
+
frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text], api_name=API_NAME)
|
214 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME)
|
215 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
|
216 |
+
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME)
|
|
|
|
|
|
|
|
|
217 |
stop_btn.click(fn=None, cancels=stream_event)
|
218 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
|
219 |
|
220 |
if __name__ == '__main__':
|
221 |
app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)
|