Spaces:
Sleeping
Sleeping
import numpy as np # linear algebra | |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
import time | |
import torch | |
from transformers import T5ForConditionalGeneration,T5Tokenizer | |
import random | |
import spacy | |
import zipfile | |
import os | |
import json | |
from sense2vec import Sense2Vec | |
import requests | |
from collections import OrderedDict | |
import string | |
import pke | |
import nltk | |
import numpy | |
from nltk import FreqDist | |
nltk.download('brown', quiet=True, force=True) | |
nltk.download('stopwords', quiet=True, force=True) | |
nltk.download('popular', quiet=True, force=True) | |
from nltk.corpus import stopwords | |
from nltk.corpus import brown | |
from similarity.normalized_levenshtein import NormalizedLevenshtein | |
from nltk.tokenize import sent_tokenize | |
from flashtext import KeywordProcessor | |
# from Questgen.encoding.encoding import beam_search_decoding | |
# from Questgen.mcq.mcq import tokenize_sentences | |
# from Questgen.mcq.mcq import get_keywords | |
# from Questgen.mcq.mcq import get_sentences_for_keyword | |
# from Questgen.mcq.mcq import generate_questions_mcq | |
# from Questgen.mcq.mcq import generate_normal_questions | |
import time | |
import numpy as np # linear algebra | |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
import time | |
import torch | |
from transformers import T5ForConditionalGeneration,T5Tokenizer | |
import random | |
import spacy | |
import zipfile | |
import os | |
import json | |
from sense2vec import Sense2Vec | |
import requests | |
from collections import OrderedDict | |
import string | |
import pke | |
import nltk | |
from nltk import FreqDist | |
nltk.download('brown') | |
nltk.download('stopwords') | |
nltk.download('popular') | |
from nltk.corpus import stopwords | |
from nltk.corpus import brown | |
# from similarity.normalized_levenshtein import NormalizedLevenshtein | |
from nltk.tokenize import sent_tokenize | |
# from flashtext import KeywordProcessor | |
def beam_search_decoding (inp_ids,attn_mask,model,tokenizer): | |
beam_output = model.generate(input_ids=inp_ids, | |
attention_mask=attn_mask, | |
max_length=256, | |
num_beams=10, | |
num_return_sequences=3, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in | |
beam_output] | |
return [Question.strip().capitalize() for Question in Questions] | |
def MCQs_available(word,s2v): | |
word = word.replace(" ", "_") | |
sense = s2v.get_best_sense(word) | |
if sense is not None: | |
return True | |
else: | |
return False | |
def edits(word): | |
"All edits that are one edit away from `word`." | |
letters = 'abcdefghijklmnopqrstuvwxyz '+string.punctuation | |
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] | |
deletes = [L + R[1:] for L, R in splits if R] | |
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] | |
replaces = [L + c + R[1:] for L, R in splits if R for c in letters] | |
inserts = [L + c + R for L, R in splits for c in letters] | |
return set(deletes + transposes + replaces + inserts) | |
def sense2vec_get_words(word,s2v): | |
output = [] | |
word_preprocessed = word.translate(word.maketrans("","", string.punctuation)) | |
word_preprocessed = word_preprocessed.lower() | |
word_edits = edits(word_preprocessed) | |
word = word.replace(" ", "_") | |
sense = s2v.get_best_sense(word) | |
most_similar = s2v.most_similar(sense, n=15) | |
compare_list = [word_preprocessed] | |
for each_word in most_similar: | |
append_word = each_word[0].split("|")[0].replace("_", " ") | |
append_word = append_word.strip() | |
append_word_processed = append_word.lower() | |
append_word_processed = append_word_processed.translate(append_word_processed.maketrans("","", string.punctuation)) | |
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits: | |
output.append(append_word.title()) | |
compare_list.append(append_word_processed) | |
out = list(OrderedDict.fromkeys(output)) | |
return out | |
def get_options(answer,s2v): | |
distractors =[] | |
try: | |
distractors = sense2vec_get_words(answer,s2v) | |
if len(distractors) > 0: | |
print(" Sense2vec_distractors successful for word : ", answer) | |
return distractors,"sense2vec" | |
except: | |
print (" Sense2vec_distractors failed for word : ",answer) | |
return distractors,"None" | |
def tokenize_sentences(text): | |
sentences = [sent_tokenize(text)] | |
sentences = [y for x in sentences for y in x] | |
# Remove any short sentences less than 20 letters. | |
sentences = [sentence.strip() for sentence in sentences if len(sentence) > 20] | |
return sentences | |
def get_sentences_for_keyword(keywords, sentences): | |
keyword_processor = KeywordProcessor() | |
keyword_sentences = {} | |
for word in keywords: | |
word = word.strip() | |
keyword_sentences[word] = [] | |
keyword_processor.add_keyword(word) | |
for sentence in sentences: | |
keywords_found = keyword_processor.extract_keywords(sentence) | |
for key in keywords_found: | |
keyword_sentences[key].append(sentence) | |
for key in keyword_sentences.keys(): | |
values = keyword_sentences[key] | |
values = sorted(values, key=len, reverse=True) | |
keyword_sentences[key] = values | |
delete_keys = [] | |
for k in keyword_sentences.keys(): | |
if len(keyword_sentences[k]) == 0: | |
delete_keys.append(k) | |
for del_key in delete_keys: | |
del keyword_sentences[del_key] | |
return keyword_sentences | |
def is_far(words_list,currentword,thresh,normalized_levenshtein): | |
threshold = thresh | |
score_list =[] | |
for word in words_list: | |
score_list.append(normalized_levenshtein.distance(word.lower(),currentword.lower())) | |
if min(score_list)>=threshold: | |
return True | |
else: | |
return False | |
def filter_phrases(phrase_keys,max,normalized_levenshtein ): | |
filtered_phrases =[] | |
if len(phrase_keys)>0: | |
filtered_phrases.append(phrase_keys[0]) | |
for ph in phrase_keys[1:]: | |
if is_far(filtered_phrases,ph,0.7,normalized_levenshtein ): | |
filtered_phrases.append(ph) | |
if len(filtered_phrases)>=max: | |
break | |
return filtered_phrases | |
def get_nouns_multipartite(text): | |
out = [] | |
extractor = pke.unsupervised.MultipartiteRank() | |
extractor.load_document(input=text, language='en') | |
pos = {'PROPN', 'NOUN'} | |
stoplist = list(string.punctuation) | |
stoplist += stopwords.words('english') | |
extractor.candidate_selection(pos=pos) | |
# 4. build the Multipartite graph and rank candidates using random walk, | |
# alpha controls the weight adjustment mechanism, see TopicRank for | |
# threshold/method parameters. | |
try: | |
extractor.candidate_weighting(alpha=1.1, | |
threshold=0.75, | |
method='average') | |
except: | |
return out | |
keyphrases = extractor.get_n_best(n=10) | |
for key in keyphrases: | |
out.append(key[0]) | |
return out | |
def get_phrases(doc): | |
phrases={} | |
for np in doc.noun_chunks: | |
phrase =np.text | |
len_phrase = len(phrase.split()) | |
if len_phrase > 1: | |
if phrase not in phrases: | |
phrases[phrase]=1 | |
else: | |
phrases[phrase]=phrases[phrase]+1 | |
phrase_keys=list(phrases.keys()) | |
phrase_keys = sorted(phrase_keys, key= lambda x: len(x),reverse=True) | |
phrase_keys=phrase_keys[:50] | |
return phrase_keys | |
def get_keywords(nlp,text,max_keywords,s2v,fdist,normalized_levenshtein,no_of_sentences): | |
doc = nlp(text) | |
max_keywords = int(max_keywords) | |
keywords = get_nouns_multipartite(text) | |
keywords = sorted(keywords, key=lambda x: fdist[x]) | |
keywords = filter_phrases(keywords, max_keywords,normalized_levenshtein ) | |
phrase_keys = get_phrases(doc) | |
filtered_phrases = filter_phrases(phrase_keys, max_keywords,normalized_levenshtein ) | |
total_phrases = keywords + filtered_phrases | |
total_phrases_filtered = filter_phrases(total_phrases, min(max_keywords, 2*no_of_sentences),normalized_levenshtein ) | |
answers = [] | |
for answer in total_phrases_filtered: | |
if answer not in answers and MCQs_available(answer,s2v): | |
answers.append(answer) | |
answers = answers[:max_keywords] | |
return answers | |
def generate_questions_mcq(keyword_sent_mapping,device,tokenizer,model,sense2vec,normalized_levenshtein): | |
batch_text = [] | |
answers = keyword_sent_mapping.keys() | |
for answer in answers: | |
txt = keyword_sent_mapping[answer] | |
context = "context: " + txt | |
text = context + " " + "answer: " + answer + " </s>" | |
batch_text.append(text) | |
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt") | |
print ("Running model for generation") | |
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) | |
with torch.no_grad(): | |
outs = model.generate(input_ids=input_ids, | |
attention_mask=attention_masks, | |
max_length=150) | |
output_array ={} | |
output_array["questions"] =[] | |
# print(outs) | |
for index, val in enumerate(answers): | |
individual_question ={} | |
out = outs[index, :] | |
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
Question = dec.replace("question:", "") | |
Question = Question.strip() | |
individual_question["question_statement"] = Question | |
individual_question["question_type"] = "MCQ" | |
individual_question["answer"] = val | |
individual_question["id"] = index+1 | |
individual_question["options"], individual_question["options_algorithm"] = get_options(val, sense2vec) | |
individual_question["options"] = filter_phrases(individual_question["options"], 10,normalized_levenshtein) | |
index = 3 | |
individual_question["extra_options"]= individual_question["options"][index:] | |
individual_question["options"] = individual_question["options"][:index] | |
individual_question["context"] = keyword_sent_mapping[val] | |
if len(individual_question["options"])>0: | |
output_array["questions"].append(individual_question) | |
return output_array | |
def generate_normal_questions(keyword_sent_mapping,device,tokenizer,model): #for normal one word questions | |
batch_text = [] | |
answers = keyword_sent_mapping.keys() | |
for answer in answers: | |
txt = keyword_sent_mapping[answer] | |
context = "context: " + txt | |
text = context + " " + "answer: " + answer + " </s>" | |
batch_text.append(text) | |
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt") | |
print ("Running model for generation") | |
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) | |
with torch.no_grad(): | |
outs = model.generate(input_ids=input_ids, | |
attention_mask=attention_masks, | |
max_length=150) | |
output_array ={} | |
output_array["questions"] =[] | |
for index, val in enumerate(answers): | |
individual_quest= {} | |
out = outs[index, :] | |
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
Question= dec.replace('question:', '') | |
Question= Question.strip() | |
individual_quest['Question']= Question | |
individual_quest['Answer']= val | |
individual_quest["id"] = index+1 | |
individual_quest["context"] = keyword_sent_mapping[val] | |
output_array["questions"].append(individual_quest) | |
return output_array | |
def random_choice(): | |
a = random.choice([0,1]) | |
return bool(a) | |
class QGen: | |
def __init__(self): | |
self.tokenizer = T5Tokenizer.from_pretrained('t5-large') | |
model = T5ForConditionalGeneration.from_pretrained('Parth/result') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# model.eval() | |
self.device = device | |
self.model = model | |
self.nlp = spacy.load('en_core_web_sm') | |
self.s2v = Sense2Vec().from_disk('s2v_old') | |
self.fdist = FreqDist(brown.words()) | |
self.normalized_levenshtein = NormalizedLevenshtein() | |
self.set_seed(42) | |
def set_seed(self,seed): | |
numpy.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
def predict_mcq(self, payload): | |
start = time.time() | |
inp = { | |
"input_text": payload.get("input_text"), | |
"max_questions": payload.get("max_questions", 4) | |
} | |
text = inp['input_text'] | |
sentences = tokenize_sentences(text) | |
joiner = " " | |
modified_text = joiner.join(sentences) | |
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) ) | |
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences) | |
for k in keyword_sentence_mapping.keys(): | |
text_snippet = " ".join(keyword_sentence_mapping[k][:3]) | |
keyword_sentence_mapping[k] = text_snippet | |
final_output = {} | |
if len(keyword_sentence_mapping.keys()) == 0: | |
return final_output | |
else: | |
try: | |
generated_questions = generate_questions_mcq(keyword_sentence_mapping,self.device,self.tokenizer,self.model,self.s2v,self.normalized_levenshtein) | |
except: | |
return final_output | |
end = time.time() | |
final_output["statement"] = modified_text | |
final_output["questions"] = generated_questions["questions"] | |
final_output["time_taken"] = end-start | |
if torch.device=='cuda': | |
torch.cuda.empty_cache() | |
return final_output | |
def predict_shortq(self, payload): | |
inp = { | |
"input_text": payload.get("input_text"), | |
"max_questions": payload.get("max_questions", 4) | |
} | |
text = inp['input_text'] | |
sentences = tokenize_sentences(text) | |
joiner = " " | |
modified_text = joiner.join(sentences) | |
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) ) | |
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences) | |
for k in keyword_sentence_mapping.keys(): | |
text_snippet = " ".join(keyword_sentence_mapping[k][:3]) | |
keyword_sentence_mapping[k] = text_snippet | |
final_output = {} | |
if len(keyword_sentence_mapping.keys()) == 0: | |
print('ZERO') | |
return final_output | |
else: | |
generated_questions = generate_normal_questions(keyword_sentence_mapping,self.device,self.tokenizer,self.model) | |
print(generated_questions) | |
final_output["statement"] = modified_text | |
final_output["questions"] = generated_questions["questions"] | |
if torch.device=='cuda': | |
torch.cuda.empty_cache() | |
return final_output | |
def paraphrase(self,payload): | |
start = time.time() | |
inp = { | |
"input_text": payload.get("input_text"), | |
"max_questions": payload.get("max_questions", 3) | |
} | |
text = inp['input_text'] | |
num = inp['max_questions'] | |
self.sentence= text | |
self.text= "paraphrase: " + self.sentence + " </s>" | |
encoding = self.tokenizer.encode_plus(self.text,pad_to_max_length=True, return_tensors="pt") | |
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device) | |
beam_outputs = self.model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_masks, | |
max_length= 50, | |
num_beams=50, | |
num_return_sequences=num, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
# print ("\nOriginal Question ::") | |
# print (text) | |
# print ("\n") | |
# print ("Paraphrased Questions :: ") | |
final_outputs =[] | |
for beam_output in beam_outputs: | |
sent = self.tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
if sent.lower() != self.sentence.lower() and sent not in final_outputs: | |
final_outputs.append(sent) | |
output= {} | |
output['Question']= text | |
output['Count']= num | |
output['Paraphrased Questions']= final_outputs | |
for i, final_output in enumerate(final_outputs): | |
print("{}: {}".format(i, final_output)) | |
if torch.device=='cuda': | |
torch.cuda.empty_cache() | |
return output | |
class BoolQGen: | |
def __init__(self): | |
self.tokenizer = T5Tokenizer.from_pretrained('t5-base') | |
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_boolean_questions') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# model.eval() | |
self.device = device | |
self.model = model | |
self.set_seed(42) | |
def set_seed(self,seed): | |
numpy.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
def random_choice(self): | |
a = random.choice([0,1]) | |
return bool(a) | |
def predict_boolq(self,payload): | |
start = time.time() | |
inp = { | |
"input_text": payload.get("input_text"), | |
"max_questions": payload.get("max_questions", 4) | |
} | |
text = inp['input_text'] | |
num= inp['max_questions'] | |
sentences = tokenize_sentences(text) | |
joiner = " " | |
modified_text = joiner.join(sentences) | |
answer = self.random_choice() | |
form = "truefalse: %s passage: %s </s>" % (modified_text, answer) | |
encoding = self.tokenizer.encode_plus(form, return_tensors="pt") | |
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device) | |
output = beam_search_decoding(input_ids, attention_masks,self.model,self.tokenizer) | |
if torch.device=='cuda': | |
torch.cuda.empty_cache() | |
final= {} | |
final['Text']= text | |
final['Count']= num | |
final['Boolean Questions']= output | |
return final | |
class AnswerPredictor: | |
def __init__(self): | |
self.tokenizer = T5Tokenizer.from_pretrained('t5-large', model_max_length=512) | |
model = T5ForConditionalGeneration.from_pretrained('Parth/boolean') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# model.eval() | |
self.device = device | |
self.model = model | |
self.set_seed(42) | |
def set_seed(self,seed): | |
numpy.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
def greedy_decoding (inp_ids,attn_mask,model,tokenizer): | |
greedy_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256) | |
Question = tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
return Question.strip().capitalize() | |
def predict_answer(self,payload): | |
answers = [] | |
inp = { | |
"input_text": payload.get("input_text"), | |
"input_question" : payload.get("input_question") | |
} | |
for ques in payload.get("input_question"): | |
context = inp["input_text"] | |
question = ques | |
input = "question: %s <s> context: %s </s>" % (question,context) | |
encoding = self.tokenizer.encode_plus(input, return_tensors="pt") | |
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device) | |
greedy_output = self.model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=256) | |
Question = self.tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
answers.append(Question.strip().capitalize()) | |
return answers |